GDL Reference Guide

GRAPHISOFT

GRAPHISOFT®

Visit the GRAPHISOFT website at bitp:/ [/ www.graphisoft.com for local distributor and product availability information.

GDL Reference Guide

Copytight© 2016 by GRAPHISOFT, all rights reserved. Reproduction, paraphrasing ot translation without express prior written permission
is strictly prohibited.

Trademarks
ARCHICAD® is a registered trademark and PlotMaker, Virtual Building and GDL are trademarks of GRAPHISOFT. All other trademarks
are the property of their respective holders.

http://www.graphisoft.com

Introduction

Introduction

This manual is a complete reference to the GRAPHISOFT"s proprietary scripting language, GDL (Geometric Description 1anguage). The mannal is recommended
Jfor those users who wish to expand on the possibilities presented by the construction tools and object libraries in GRAPHISOFT software. It gives a detailed description
of GDL, including syntax definitions, commands, variables, ete.

GDL Reference Guide il

GDL Reference Guide

Table of Contents

(€1 S O A v 1 PP PP UPPUNt 1
] 728 4o Vo Ve 1 PP PPN 1
SCIIPHIIE Looie it e 1
0] I 3 s 1S5 X6 (o) o Pt 8

Gl STNEAX ottt 11
Rules Of GIDLL SYATAK ..uiiiii i e et 11
20100 15 0 1N 11
o PPN 11
I o1 TP P PP 11
(00T T o To (= < TP 11
SHEIIIES ot e 12
16 SNt S 1 PP OO PPN 12
R a1 o) (PPN 12
2 0 01 (3 Pt 13
SIMPIE TYPES ..ottt e 13
DELIVEA TYPES e e 13
Conventions used 10 this DOOKi.i.iiii e e e e e e 14

(@176} e oYl BezFe 1) deyu e sk (o) o [NN PP PPUPNt 15
2D THANSTOTMAIONS ..ttt sttt ettt e e e e e e et et et et et et e e e e e e e e e e e et e et e et et et et et et et et e e et et e et reaas 15

1A) B PR 15
1Y L6 5 PP UP 15
RO T o e e 16
) B I B Yo) (oY o s a1 (o) o L AN TP PPN 16
Fa D) B) PP U PUPPUN 16
Fa) B) PP PP 16
1A\) B /PP UPPPNt 16
A D D ot e et 16
1LY L8] 5 G OO PPt 17
1Y L8] 5 U PO PPPPRPRPRINY 17
1Y L8] 5/ USRS 17

GDL Reference Guide iv

GDL Reference Guide

IMUL Lo 17
ROTX i 17
ROTY oo 17
ROTZ oo 18
ROT Lo 18
XEORM ..ot 18
Managing the Transformation StACKcoiiiiiiiiiiiiii 19
DIEL Lo 19
DEL TOP i 19
INTR o e 19
BID SRAPES ..ttt 21
BasiC SHAPES ..uuiiiiiiii 21
BLOGK Lo 21
BRICK L. e 21
CYLIND Lo 22
SPHERE ... 22
BELLIPS oot 23
CONE oo 24
PRISM .o e 24
PRISML_ i e 25
CPRISM_ i e 28
CPRISM_{2} .o e 29
CPRISM {3} oot 30
CPRISM_{4} oot e 31
BPRISM_ oottt e 31
FPRISML_ Lot 33
HPRISM_ oot 35
SPRISM_ Lottt 36
SPRISM_{2} .ttt 37
SPRISM_ {3} .ttt 38
SPRISM_{4} .ttt 39
SLAB oo 40
SLAB oo 40

GDL Reference Guide v

GDL Reference Guide

CSLABL i 41
CWALLL oo e 41
BWALLL oo 45
XWALL e 47
XWALLL_ {2} oot 49
O AL {3} oo 50
BEAM oo 53
CROOE_ i e 53
CROOF {2} i e 56
CROOF {3} oo e 57
CROOF {4} oo e 58
MESH .ot 58
ARMO oo 60
ARME Lo 61
ELBOW oo 62
Planar Shapes 10 3D ... 63
HOTSPOT oot e 03
HOTLINE Lo e e 063
HOTARC L. 64
LN L e 64
RECT oot 64
POLY oo 64
POLY oo 65
PLANE L. 66
PLANEL Lo 66
CIRCLE ..ot 66
ARC oo 67
Shapes Generated from POIYIINESoiiiiiiiiiiiiii 67
EXTRUDE oot 69
PYRAMID L.ooiiiiiiii e e 72
REVOLVE L. 74
REVOLVE {2} oo 79
REVOLVE {3} e 80

GDL Reference Guide vi

GDL Reference Guide

L DAY @) IV PP 82
L DAY @) Y S PSPPI 82
RULE D ettt ettt et e e e et et e e e e ettt 82
LSO) 2 R PP 82
NN 2 2 OO PP 86
1 N0 2] S PP PP 88
LU B A Lot e et ettt e e et 93
(610 10\ T TP PP 95
1Y S T TP 99
LY A T PPN 102
POLLY RO ittt e e e ettt e e et 103
| @) B4 0 L0) S 2 SRR 108
| @) 40 0) S PP 108
| @) B4 0 L@) S PP 111
EXTRUDEDSHELL ...ttt e e e e et et e e e e e ettt et et et et et et e ettt et e e et et et et e e s eaeaens 111
EXTRUDEDSHELL{2} .oiuiiiiiiiiie e e et ettt et e e et et e et et e e et e e s e et e et e et e et e aae et e e e e ean e ea e et eanaeanaesnns 112
EXTRUDEDSHELL{B3} .oouiiiiiiiiieit ettt et et e et et e e et e e e et e et e e et e e st e e e et e et e et e tae et e e e e eaneeaeaaaestneanaesnas 114
REVOLVEDSHELL ..ooitiiititiiii et et e e e e ettt et e e e e et et e et et e et e et et et e s e e s eaeaens 114
REVOLVEDSHELL{2} ..ottt ettt e et e e e et e e et e et e et et et e et et e e aa e e e e eaeea e et e et eaeaennnns 115
L DAY @) Y 1 D] S 1 21 B D SRR 117
REVOLVEDSHELLANGULAR ...ttt e e et et e et et e et e et e et et e e e eaa e enes 117
REVOLVEDSHELLANGULARY{2} ..ottt et e et e e e e e e e et e et et e et e et e et e et e e e e e e aa e eaneeaneennes 118
REVOLVEDSHELLANGULAR{3} ..ouniiiiiiitie et e et et et e et e e e e et e et e et e et e et e et et e tan e e e eaa e eaneeaneannes 118
RULED SHELL ..ttt et e et et e e e e e e et et et e et et e et et e et e e et et et et et et e et e eaeaeenanas 119
O B A D] 2 B 2/ PP 121
O B A D] 02 B D 3 TP 124
Elements fOr VISUALIZATION L.u.uuutiiiisi et e e et et et et et et ettt a et e e e e e e e et et et et et et et et e tea e ae e e ae e e e e et e e enenenes 124
|91 (€ S 16 U U U URN 124
| (O N B 2 PR P PP 129
0] I o 1T T o N PN 130
8 N 25 PSP UPRPPPINY 130
(015 1 N 25 € PO PP PSP 131
R o U AR A 1S ' TS X - PP 131

GDL Reference Guide vil

GDL Reference Guide

VERT oo 132
VERT {2} oottt et ettt ettt ettt e e e 132
TEVE e 133
VECT < 133
EDGE oo 133
PGON Lo 134
PGON {2} oottt ettt ettt e 135
PG ON {3} ittt et et e e e 135
PIPG o 135
COOR e 135
COOR{ZY e ettt et 137
COOR B} ettt 138
BODY o 139
BASE o 142
NURBS Primitive EISMENTSoouiiiiiiiiiiii e 143
NURBS FacCe trMMING ...ovuiiiiiiiii it ettt 144
NURBS Geometry COMMANGS ..e.ueuniuniiniiiiiiei ettt ettt ettt ettt ettt ettt ettt et et e et e enens 144
NURBSCURVEZD ..ottt ettt et 144
NURBSCURVEBD ..ottt 145
NURBSSURFACE ..ottt 146
NURBS Topology Commandsiiuiiiiiiiii e 146
INURBSVERT ..o et 147
NURBSEDGE ..ottt 147
INURBSTRIM ..ttt et et et et e e e e e e 148
NURBSTRIMSINGULAR ...ttt ettt 148
INURBSFACE ..ottt et 149
INURBSLUDMP oo ettt et et 149
INURBSBODY .ottt ettt et 150

Point ClLOUAS ...uiiniiiii 150
POINTCLOUD ...ttt ettt et e 150
Cutting I 3D Lo 151
CUTPLANE .ottt ettt e e 151
CUTPLANE {2} oottt et ettt ettt 151

GDL Reference Guide viii

GDL Reference Guide

CUTPLANE {3} oottt ettt ettt e e 151
CUTPOLY ottt ettt et ettt 155
CUTPOLYA .ot 157
CUTSHARPE ..ot 160
CUTEFORM ..ottt ettt et e e et e e 160
CUTFORM {2} ittt ettt ettt et et e e e 162

Solid Geometry COMMANGS ..e.ueunitniinieeiti ettt et ettt et e et e ettt et et e et e et e e e a e e e a e e e 162
GROUP - ENDGROUP ..ttt ettt 166
ADDGROUP Lot 167
SUBGROUDP .ottt e 167
ISECTGROUP .ottt 167
ISECTLINES .ottt e 168
PLACEGROUP ...oiiiiiiii ettt e 168
KILLGROUP L.ttt ettt ettt e e 168
SWEEPGROUP ...ttt ettt et 169
CREATEGROUPWITHMATERIAL ..ottt et 170
BINALY 3D ottt e e e 171
BINARY Lottt e 171

2D SRAPES . .oiiiiii i 173
Drawing EISMENTSoouiiiiiiiii 173
HOTSPOTZ oot ettt ettt 173
HOTLINEZ L. ettt et ettt e e e e 173
HOTARC L.ttt 174
LINEZ Lottt 174
REGCT2 oot 174
POLY2 oo 174
POLY2 oo 175
POLY2 A Lo 176
POLY2 B oo e 177
POLYZ_B{2} oottt 177
POLY 2 B {3} oottt et 178
POLYZ_B{4} oottt e 178
POLY 2 B {5} ottt 178

GDL Reference Guide ix

GDL Reference Guide

ARG oo 179
CIRCLEZ ... 180
SPLINEZ L oo 180
SPLINE2A . oo 182
PICTUREZ L. oot 184
PICTUREZ{2} oottt 184

TEXt BIEIMIEIIE L.uiiiti ittt 184
TEXT2 i 184
RICHTEXTZ Looiiiiiiiiii e 185
BINALY 2D oo e e 185
FRAGMENT2 ...ttt 185

3D Projections i 2IDiiiiiii i 185
PROJECTZ Looiiiiiii e e 185
PROJECTZ{2} ..o 186
PROJECTZ2{3} ..ot 189
PROJECTZ{4} oo 190
Drawings i the TStiuiiiiii 193
DRAWINGZ oottt e 193
DRAWINGS .ot 193
DRAWINGS3 {2} ©ooiiiiiiiiii e 193
DRAWINGS3 {3} ..ot 193
Graphical Editing Using HOESPOLSiuuiiniiiiiiiii e 195
N2 0T 203
SAtUS COAE STIEAX .otuettiiniinii ettt et e ettt et et e e et e e e et 203
AddIional Statts COAESovvuiiiiiiiii e 204
Previous part of the polyline: current position and tangent is definedoo 205
Segment by absolute endPOINtiiiiiiiiii 205
Segment by relative eNdPOINtiuiiiiiiii i 205
Segment by length and dif€Ctionoiiiiiiiiiiiiiii 206
Tangential segment by lengthooiiiiiii 206

SEU STATT POIE 11uitiiiii ittt 207
CIOSE POLTHNE 1.uiiiiiii i 207

SEE AN Louutiitiii i e 207

GDL Reference Guide X

GDL Reference Guide

S CEMEEIPOINT . ouiiitiiitii e 208
Tangential arc t0 ENAPOIIIE ...oouuiitiiitii i 208
Tangential arc by radius and angle ... 209
Arc using centerpoint and point on the final radiusoooooi 209
Arc using centerpoint and angle ... 210
Full circle using centerpoint and raditisooooiiiiiiiiiiiii 210
AEIIDULES Lot e 216
T 216
Directives for 3D and 2D SCIIPES ...uivuiiiiiiiiiiiiiii 216
LT 216
RADIUS oo 216
RESOL .ot 217
TOLER ..o 218

PEN Lo 219
LINE_PROPERTY ..ottt 220
[SET] STYLE L.ttt e 220
Directives Used in 3D Scripts ONLYoouiiiiiiiiiiii 220
MODEL ..ot 220
[SET] MATERIAL ..ottt 221
SECT_EFILL oottt 222
SECT_ATTRS L. 222
SHADOW oo 222
Directives Used in 2D Scripts ONIYiuuiiiiiiiiii 223
DRAWINDEX ... 223
[SET] FILL oottt 224
[SET] LINE_TYPE ...t 224
Inline Attribute DefINTtONuiiiiiiii e 224
IMIALCIIALS ©.vviiin et 225
DEFINE MATERIALoiiiiii e 225
DEFINE MATERIAL BASED_ON ...t 227
DEFINE TEXTURE ... 228

FLIS Lo 230
DEFINE FILL ..o 230

GDL Reference Guide xi

GDL Reference Guide

DEFINE FILLA L. 234

DEFINE SYMBOL_FILLotiiiiiiiiiii e 236

DEFINE SOLID_EFILL ...ooiiiiiiiiiiii e 237

DEFINE EMPTY _FILL ..ot 238

DEFINE LINEAR_GRADIENT_FILL ...t 238

DEFINE RADIAL_GRADIENT_FILLottt 238

DEFINE TRANSLUCENT_FILL ..ottt 238

DEFINE IMAGE_FILL ...t 238

TLNE TYPES woniitiiii i 239
DEFINE LINE_TYPE ...t 239

DEFINE SYMBOL_LINE ...t 239

Text Styles and Text BLOCKSoouiiuiiniii e 240
DEFINE STYLE L.t 240

DEFINE STYLE {2} ..ot 241
PARAGRAPH ... 242
TEXTBLOCK ...t 243
TEXTBLOCK L oot 244

AddIIONAl DIAA L..oiiiiiii e 244
External file dependenceooiiiiiiiiiiiiii 245
FILE_DEPENDENCEot 245
INON-GEOMELIIC SCIIPLS 1.uivtitiiiti ittt et et e et et e et et et e et e e e e eaa e 246
The PrOPErties SCIIPE ...uuuiuuiiiiiii it ettt 246
DATABASE _SET ..ot 246
DESCRIPTOR L..oiiiiiiiii e e 247

REF DESCRIPTOR ...oiiiiiiiiiiiii e 247
COMPONENT ..ot e 247

REF COMPONENT ..ot e e 248
BINARYPROP ..ottt 248
SURFACESD ...t 248
VOLUMESD Lo 248
POSITION Lo e e 248
DRAWING .ottt 249

The Parameter SCHPEuiuiiiiiii e 250

GDL Reference Guide xii

GDL Reference Guide

VALUES oo 250
VALUES{2} o 251
PARAMETERS L. oo 252
LOCK o 252
HIDEPARAMETER ..o 252
The User INErface SCIIPL ..uivuiiiniiiiiiii i 252
UILDIALOG oot 253
UILPAGE Lo 253
UILCURRENT_PAGE ...t 254
UILBUTTON Lottt 254
UILPICT_BUTTON ..ottt e 255
UILSEPARATOR ..ottt 255
UILGROUPBOX ..ottt 255
UILLPICT Lo e 256
UILLSTYLE oo e 256
UILOUTEIELD ..ottt 256
UILINFIELD oot e 257
UTLINFIELD {2} oottt 257
UTILINFIELD {3} oottt 258
UILINFIELD {4} oot 258
UI_CUSTOM_POPUP_INFIELDooiiiiiiiiiiiiiiiii e 266
UI_CUSTOM_POPUP_INFIELD {2} .. .ottt e 266
UILRADIOBUTTON ..ottt e 269
UI_RADIOBUTTON{2} .ottt 269
UILLISTEFIELD oot 270
UILLLISTITEM Lo 270
UILLISTITEMA{2} ..o e 270
UI_CUSTOM_POPUP_LISTITEMuiiiiiiiiiiiii i 272
UI_CUSTOM_POPUP_LISTITEM {2}uiiiiiiiiiiiiiiiiiiii e 272
UILTOOLTIP oottt 275
UILCOLORPICKER ...ttt 276
UILCOLORPICKER {2} ittt 276
UILSLIDER oot 277

GDL Reference Guide xiii

GDL Reference Guide

UILSLIDER {2} oottt e 277

The Forward MIgration SCIPEiuuiiuiiiiiiii e 277
SETMIGRATIONGUID ...ttt 278
STORED_PAR_VALUEottt 279
DELETED_PAR_VALUEot 279

The Backward MIGration SCIIPEiiuiiuiiiiiiii e 279
NEWPARAMETER ..o 281
Expressions and FUNCHOMNS ... 282
BIXPIESSIONS 1ottt 282
DI e 282
VARDIMI Lo 283
VARDIM oot 283
PARVALUE_DESCRIPTION L...oiiiiiiiiiiiiiiii e 284
OPEIALOLS . iutitiii it 284
AIthmetical OPEIAOLSiuuiiiiiiiii i e 285
Relational OPEratOrs ... ouu.iuuiitiiiii e 285
BOOIean OPEratorsiuuiiuiiiiiiii e 286
LT T} TN 286
Arithmetical FUNCHOMS ...uiiiuiiiiii e e 286

B 286

CEIL oo e 286

L 286

R A 286

ROUND L_INT oottt 286

SN 287

SR 287

Grcular FUNCHONS ..uuiiiiiii e e e 287

A 287

AN L 287

AN e 287

GO 287

SN e 287

AN e e 288

GDL Reference Guide xiv

GDL Reference Guide

| PO TP PP 288
Transcendental FUNCHOMNSu.u it e e e et ettt e e e e et et et et et et e e e e et e e e e e e e e e e e e et et etaneaes 288
X D ot e e e e 288

| 5 €5 AU USROS 288

| 5O L € OO 288
J7070) 1=z a T 21 E Ve o o3 a Lo PP 288
IO TP PSPPI 288

N 7288 16 oz I 218V Vo (o) o L PP 289
1A 0 5 USSP 289

1A O G PP 289
RN D oottt e ettt e aeaaaas 289

53 L 6T ot o3 o N 289
13116 1 B USSP 289
13116) S TP 289
Special FUNCHONS ...uiiitiii i e 289
3 PP 289

RE QU EE ST ittt ettt ettt e e e e e e e e e e e e e e e e ettt 290

155\ O PO PPN 290
APPLICATION_QUERY ..ttt ettt ettt ettt e e e e e e e e et et e et et e et e et e et et et eneens 291
TIBRARY GLOBAL Lottt et e e et et e e e e e e et et e et et e et e et et e e 291
SEANG TUNCHONS L.iutiiiiii e 291
S R i e ettt 291
N/ P PTPPRN 292

N] & 1 16 TP PP PPTON 295

NS A PO PPTON 296

NS N A PPN 296

N NI N L PP 297

NS NI U S T PO PPN 297
STRTOUPPER ..ottt ettt e et et e et e e et e et e e e et et et et et ettt e e e e et et e e reaeanas 298
STRTOLIOWER ...ttt e et e et e et ettt e e e et e e et et e e et et et et et et e et e e et e e aaereans 298
(701w ao) B8 73 ' 12 X T PP PPRPN 299
L1103 @ T a L o) N 7N 73 ' 12 X T PP 299
|20 N @ S] 2 PSPPI 299

GDL Reference Guide XV

GDL Reference Guide

DO - WHILE ..o 300
WHILE - ENDWHILE ... 300
REPEAT - UNTIL oot 301

TE = GOTO i e 302

IF - THEN - ELSE - ENDIE ..o 303
GOTO oot 304
GOSUB .o 304
RETURN Lo e 304
END / EXIT ittt 305
BREAKPOINT ..o e 305
Parameter Buffer Manipulationooioiiiiiiiiiiii 305
PUT o 306

GET 306

DS 306

NS 306
IMACTO ODJECES ..vvuiiiiiii i 309
CALL oo 309
Output in an Alert Box or Report WIndOwWooiiiiiiiiiiiiiii 311
PRINT oot 311

FIle OPEIAtIONS ..ovuiiiiiiii it 311
OPEN Lo 311
INPUT oo e 312
VARTYPE L. 312
OUTPUT oo e 312
CLOSE oot 312
Using Deterministic Add-OMso 313
INITADDONSCOPE L..oiiiiiiiiii e 313
PREPAREFUNCTION ...ttt 313
CALLFUNCTION oot 313
CLOSEADDONSCOPE ..ot 314

A aT] 1 T o 315
GIObAl VALIaDIESiiiiiiii e 315
Parameter script cOMPAtiDIIIEYooouiiiiiiiiii 315

GDL Reference Guide xvi

GDL Reference Guide

General environment INfOMAIONiiiuiiiiiii e 319
SEOLY INLOFMATION L.tvttittiiit ittt ettt ettt et et et ettt et ettt aaen 322
Fly-through INfOrmationoiiiiiiiiiiiiii 323
General leMent PATAIMIELETSuuiiutiitiit it 324
Object, Lamp, Door, Window, Wall End, Skylight parameterscooiiiiiiiiiiiiiii 324
Object, Lamp, Door, Window, Wall End, Skylight, Curtain Wall Accessory parameters - available for listing and labels

OIY e e 325
Object, Lamp, Curtain Wall Accessory parameters - available for listing and labels onlyoo, 325
Window, Door and Wall End parametersoooiiiiiiiiiiiii 326
Window, Door parameters - available for listing and labels onlycoooii 327
Lamp parameters - available for listing and labels onlycoooiii 328
Label PAFAMELELS L..uiiuiiiiiii i 328
Wall parametets - available for Doors/Windows, listing and 1abelsooeiiiiiiiiiiiiniii e 329
Wall parameters - available for listing and labels only ... 332
Column parameters - available for listing and labels onlycooiii 334
Beam parameters - available for listing and labels onlyooooii 336
Slab parameters - available for listing and labels only ... 337
Roof parameters - available for skylights, listing and labels ... 340
Roof parameters - available for listing and labels only ... 342
Fill parameters - available for listing and labels only ... 343
Mesh parameters - available for listing and labels only ... 344
Curtain Wall parameters - available for listing and labels only ... 345
Curtain Wall Frame parameters - available for listing and labels onlycoooii 346
Curtain Wall Panel parameters - available for listing and labels onlyoooi 347
Curtain Wall Junction parameters - available for listing and labels only ... 348
Curtain Wall Accessory parameters - available for listing and labels only ... 348
Migration parameters - available for migration SCripts ONlyc.oiiiiiiiiiiiiiiiii 348
Skylight parameters - available for listing and labels onlycooo 348
Common Parameters for Shells and Roofs - available for listing and labels onlyo 348
Parameters for Morphs - available for listing and labels only ..o 353
Free users” GlODalsiiuiiiiii i 353
Example usage of global variables ... 355
Deprecated Global Variablesoo.iiiiiiiiiiiii 355

GDL Reference Guide xvii

GDL Reference Guide

Old GIobal Variablesoiuiiiiiiiiii 356
Fix named Optional PAFAMIETETSuiiuiiiiiii i 357
Parameters set by ARCHICADoiiiiiiiiii e 357
Patameters for D/W attributes (available for Doot, Window, Label, LIStNE) «.oovvuneeiriiiniiiiiiinieiiiiineeiiiineeeiiieees 358
Floor plan diSPlayoouiiiiiiiiii 358

DIEFECHON Luuiitiiiiii i 358

Polygonal wall datacooiiiiiiiii 359

HOIe POSIION ©.ivuiiiiiiii i 359

ANCROT dAta ..o 359

Parameters for WALL attributes (available for Door, Window, Label, Listing)ccooooiiiiinn 359
Floor plan diSPIayoouiiiuiiiiiii 359

GEOMELIIC dALA L.utiitiiii i 360

Parameters for COLUMN attributes (available for Label, Listing)ccoooiiiiiiiiii 361
Floor plan diSPIayoouiiiuiiiiiii 361

GEOMELIIC dALA 1.utiitiiiiiii i 361

Parameters for BEAM attributes (available for Label, Listing)cooiiiiiiiiiii 362
Floor plan diSPIayoouiiiuiiiiiii 362

GEOMELIIC dALA 1.utiitiiiiiii i 362

Parameters for ROOF attributes (available for Label, Listing)ccocooviiiiiiii, 363
Floor plan diSPlayoouiiiiiiiiii 363

D00t/ WINAOW IMALKET AtIIDULES . vtitiritee ettt ettt ettt e e e e e e e e ettt ettt e aaas 363
Detail/Worksheet IMarker attrIDULESu e e ettt ettt ettt e e e e e e e e ettt et 365
Curtain Wall 2CCESSOLY ALIDULES ..euuiitiiniit ittt ettt e e aas 365
Drawing Title attriDULESuiiuuiiniiiiiiii e 366
General FUNMING CONMTEXE L.uiuuiittiitiiti it et et e e 367
Room parameters (available for Zone Stamps)ocooiiiiiiiiiiiiiiiii 368
Parameters read by ARCHICAD ..ottt e 370
Objects 0n Floor PIancooiiiiiii 370
Floor plan cutting of planar elements (i.e. skylight object, roof accessory objects)ccooviiiiiiiiiiin. 370

D00t/ WINAOW ODJECES +..ueetiiiie ettt ettt e ettt e et e e e e eeees 371
Curtain wall panel attribUtes ..o 371
Custom Component TEMPIALEiiuiiiiiiiiiii e 372

Z,0N€ STAMP PATAIMIELEES .. .uuiutitiiitite ittt ettt at et ettt ettt et ettt e et et e et e et e et e et e et e e e e eas 372

GDL Reference Guide xviii

GDL Reference Guide

LLabel PArEMIELEIS L.uuiuiiiiiitii e 372

Parameters for add-0Ms ..ot 372
Parameters of Skylight add-on ... 373

Hole edge cut manipulationcoiiiiiiiiiiiiiiii 373

Parameters of Corner Window add-onoooiiiii 373
Basic parameters of Corner Window ODJECtSoiuiiiiiiiiiiiiiiiiii 373

Wall skins data parameters of Corner Window objects (available from ARCHICAD 12)oooiini, 374

Parameters of TFC add-0n ..o 374
Common basic parameters of Door and Window oDbjectscooiviiiiiii 374

Basic parameters of DoOr ODJECSo.iiiiiiiiiiiiii 376

Basic parameters of Window ODJECESiiuiiiiiiiiiiiiiii 379

Basic parameters of Transport Elementsoooiiiiiiiiiiii 382

Basic parameters of Lift ODJECESottt 382

Basic parameters of Staif ODJECSouuviiiiiiiiiiiii i 383

Basic parameters of MEP €lementscoiiiiiiiiiiiiiiiiiiii 384

REQUEST OPHONS ©.uuiiiiiiii it 385
Request Parameter Script Compatibilityoiiiiiiiiiiiiiiiii 385
Details Of REQUESES ...ovviiiniiiii i 391

Deprecated REUESESoouiiiiiitii 407

Application QUETY OPHOMS 1.uuiuuiiiiiiiiiii et 408

DOCUMENE FEATULE L...iviiiiiiiii e 408

VIEW dIFECHON outiittiitii i 408

IMED SYSEEIML +.tvtetieite ittt ettt et et ettt et e e ettt et et ettt et e anen 409

GEt MED SYSLEINIS +.ttititiitit ittt ettt ettt et ettt ettt ettt 409

Get DOMAIN L.ttt 409

Get Contour Pen ... i 409

Get Tl Pen coouiiii 410

Get Background Pen ..o 410

Gt T TYPE «oivniii i 410

Get Center LINE TYPE ..ovuiiiniiiiiii e 410

Get Center LINe Peno.iiiiiiiiiiii 410

Get System MAaterialoouiiuiii i 411

Get Insulation Materialoooiiiiiiiiii 411

GDL Reference Guide xix

GDL Reference Guide

MEP MOEIET ..oiiiiiiiiii i 411
Is Available ... 411

MEP COonNection TYPE ...vuuiuuniiniiiiiiiiit it 411
Get CoNNECHON TYPES .uuiiuniiniiiiiii e 411

Get Connection TYPe SEYLEiiiiiiiiii 412

MEP Flexible SEGMENE 1.uuiiuiiitiiiiii e 412
SEALE SECHIOMINE L.uivtiiii i e 412

Add Control POIMIE ...oouuiiiiiii 412

Add Direction and Width VECTOrcoiiiiiiiiiiiiiiiii 413

ENd SECHONING .oviiitiiiii i 413

MEDP B oottt 414
SEATE SECIOMINE L.uivtiii i e e e 414
Parameter SCHPL «.ouuiiuiiiiii e 414
First Occasion i PrOGIESSo.iiiiiiiiiiii 414

Tags ANd CaAtEZOTIES ...uuiuuittiitiit e e e e 415
Get Parameter Folder INAMESooiiiiiiiiiiiii 415

Get Parameter INAMIESouuiiuiiiiii e 415

Gt PAFAMICLETS .uuiiutiiiit it 415
LADIArY MANAZET ©..ivuiiiiiii e 416
TeS FIIES Louieii 416

User IMage fIlEso.uiiuiiiiiii 416
GDL Style GUIAE «.vvuiiiiiii i 416
TNErOUCHON L.iutiiii 416
INAMING CONVENTIOMS 1.uittiitiiit ittt e e e e ettt e et e et et e s e et et e et e et e e eaaes 417
General TULES ..o 417
Variable NAMES ... 417
CapitaliZatiOniiiiii i 418
BIXPIESSIONS 11ttt 419
Control flOW SEALEIMEIITSuuiiuiiiiii ittt e e e ettt e s 420
- else = @I Lo 420

for - next, do - while, while - endwhile, repeat - until ... 421
SUDIOULINES .ottt e 421
WHIHING COMUMEIIES L. evttiitiit ittt e et e e e e e et a e et e et e et et s et e e b e et e aaeanes 422

GDL Reference Guide XX

GDL Reference Guide

Script header ... 422
Section dIVIAE ...u.ivniiiii 423
SCIIPE STIUCTULE .. ivuiiiiiii ittt e et et e et e e s s et e et e e e aa e 425
Bad SOIULON L.ouiiiiii 426
GOOd SOIULION ..iuiiitiiiiii e 427
Basic Technical Standardsooiiiiii 427
TOErOUCHON L.iuuiiii 427
LAbrary part FOIMAtiiuiiiiiiii e 428
Tl @XEEMSION ..ittiiiiiiti it 428
TAentifICAtION L...viiiiii i 428
General SCIIPLIE ISSUCS ..uivuuiitiiiii ettt e 431
Numetic tyPes - PreCiSIOniiiiiiiiii i 431
THZONOMELLY FUNCHOMS ..uuiiutiiiiiti ittt 433
GDL WATINZS ©.titiiiiii e 433
Hotspot and Hotline TIDSiiiiiiiiiiiiii 435
Putrpose of hotspot/hotline/hotarc identificationcoeeiiiiiiiiiiiiiniiiiii e 435

Problem of 0ld-school hotSpOts/ROLHNESccevuinieiiiiiieiiii e 435

Cottect hotspot/hotline/hotarc SCHPHAZ ..cevvvuniiiiiiieiiiii et 436

Editable ROtSPOLS ...iuuiiiiiiiii 436
Editable hotspot example - Shoe / SHOE-TACKoiiiiiiiiiiiiiiiei e 436

GDL €XECULION COMEEKES . .uuuiuntiunittiitiit ittt ettt et ettt e e e e et et e e et e at e et e et e s e e e e e e e et e et eaaeas 438
Communicating values with ARCHICADcooiiiiiiii 439
Information flow from ARCHICADcoiiiiiiiiiiiii 440

Global variableso.oiiiiiiii 440

Fix named Optional PATAMELEESiiuuiitiiitiiiti it 440

Requests and Application QQUETIESoouuiiuiiiiiiiii i 440
Information coming from the library partooooiiiiii 440

Model View Options, Library Globalcoooiiiiiiiiiiiii 440
Internal Model VIew OPHONSiiuiiiiiiiiiiiiii e 441

Library Global VIew OPHONSiiuiiiiiiiiiiiiii i 441

SCHIPt tyPe SPECIIC ISSUES ouuiiunitiiiti i 441
IMIASTET SCEIPL vttt ittt et 441

2D SCIIPE ittt 442

GDL Reference Guide xxi

GDL Reference Guide

EXECULION COMEEKE 1ouiitiiiiiiiiit ittt ettt et e aa e 442
General recOMMENdAtioNiiiiiiiiiiiiii 442
Defining line and fill Propertiesoiiuiiiiiiiiiiiiii 442

BID SCIIPE wuitiiiie it 443
EXECULION COMEEKE 1uuiitiiiiiiiiii ittt ettt et e et aa e aees 443
General recOMMENdAtioNiiuiiiiiiiiii 444
Modeling transparent BOIEsoiiuiiiiiiiiiiiiiii 444
TEXtULE MAPPIILG .vuittiitiiit ittt e 446
PICTULE ElEMENTS L.ivuiiitiiiiii i 452
GIOUP OPEIAIONS 1.uiittiitiiitiit ittt e e e e 453
Parameter SCIIPE ...vuuiiiiiitii i 454
EXECULION COMEEKE 1uuiitiiiiiiiiii ittt ettt et e et aa e aees 454
General recOMMENdAtionoiiiiiiiiiiiii 454

FONT tYPE NAMIES .utitiii e 455
Setting imits fOr Array PATAMELELS L..iuuuiuuiittiitiitii ittt e e e eaes 455

User INEIrfaCe SCIIPE L.uiiuiiitiiiiiii i e 456
EXECULION COMEEKE 1uuiitiiitiiiiit ittt et aees 456
General recOMMENdAtiONiiiiiiiiiiiiii 456
Thumbnail CONIOl PICTULESuiiiiiiiiiti it e 456

Tab page handlingooiiiiiiiii 457
Thumbnail controls with dyNamic TEEIMSvuitiittitiit ittt ettt aaeeaes 460
Transparent UL PICEUIESouuiiuiiiiiiiiii e 462

Font sizes on the UL ... 462
Forward MIgration SCIIPEuiuuiieiiieii it 463
EXECULION COMEEKE 1uutiitiiitiiiiiit ittt et aees 463
General recOMMENdAtiONiiiiiiiiiiiiii 464
Backward MIGIation SCIIPEouuiuuiiiiiiiiii e 465
EXECULION COMEEKE 1uutiitiiitiiiiiit ittt et aees 465
General recOMMENdAtioNiiiiiiiiiiiiii 466
MIZIation tADIEiuiiiiiii i 467
ATt Te s s VT (o T PP PPEP PP 468
A Yo OB { v s e B ot 7o ot e 468
Advanced parameters all ..o 468

GDL Reference Guide xxii

GDL Reference Guide

Faster macro call ... 468
Macro call @XAMPIE L..ivuiiiiiii 469
Background Conversion ISSUESooiiiiiiiiiiiiiiiii 469
SPEEA ISSUES w.ivniiiii i 470
Windows-Macintosh compatibilityoiiiiiiiiiiii 470
Changing platform with binary HBrafiesooooiiiiiiiiiiiii 471
Doo0rs and WINAOWSuiuiiiiii i 471
General GUIAEINES ...o.uiiiiiiiii e 471
POSIHIOMING L. evtiitii e 472
Creation of Doot/Window LIDIArY PAFTSc.uutiitueiii ittt ettt et et et e et e et e e e eainaees 474
Rectangular Doots/Windows in Straight WAllsiiiiiiiiiiiiiiiii e e 475

3D Related Challengescoouiiiiiiiiiiiii e 477
Non-Rectangular Doors/Windows in Straight Wallscoooiiiiiiiiiiiiiiii e 477
WALLHOLE ..o 477

WALLNICHE ... 480

Rectangular Doots/Windows in Cutrved Wallsocoiiiiiiiiiiiineiiiie e 481
Non-Rectangular Doors/Windows in Cutved Wallsoieiiiiiniiiiiiniiiiinii e 483

2D Related Challen@Eesuiiuiiiiiiiiiiii e 486
Cutting custom Wall OPENINGiiuiiiiiiii 486
WALLHOLEZ ..ottt 486

WALLHOLEZ {2} oottt et ettt e e e e e e 487

Extending the wall POIyZonoooiiiiiiiiiiii 488
WALLBLOCIKZ ...ttt 488
WALLBLOCKZ {2} ..ttt ettt 488

WALLLINEZ ..ot 488

WALLARCZ ..o 488

GDL Created from the Floor PIancooiiiiiiiii 489
ICEYWOLAS .ttt e 489
ComMmON KKEYWOLAS +..ettititiiiiiii ettt 489
ReServed KEYWOLASvuiniitiiii i 492
B USE OMY .oiniiiiiei ittt 492
2D TUSE ONIY ottt e 497
2D ANd 3D USE toviiiiiiiiii i 499

GDL Reference Guide xxiii

GDL Reference Guide

INON-GEOMELIIC SCIIPLS .uuiitiiiiii ittt et ettt aa e e e aaaas 500
PrOPErties SCIIPE ..ovuiiiiiiiiiiii e 500

Parameter SCHPL «.ouuiiuiiii i 501

TNLErfAce SCIIPE tovviiiiiii 501

Forward and Backward Migration SCHIPLSiiuiiiiiiiiiiiii 502

GDL Data I/O Add-Omn ..oooiiiiiiiii 502
Description of Database ..ot 502
Opening a Databaseooiiiiiiiii 503
Reading Values from Databaseooooiiiiiiiiiiiii 504
Writing Values into Databaseoiiiiiiiiiiiiii 504
Closing Databaseoiiiiiiiiiiii 505
GDL Datetime Add-Omnoiiiiiiii e 505
Opening Channel ... 505
Reading INfOrmationoiiiiiiiiiiiii e 507
Closing Chanmiel 507
GDL File Managetr I/O Add-Om ..coouuuniiiiiiiiiiii et 507
SPecifylng FOIAEToouiiiiiii 507
Getting File/FOldet INATIEoiiiiiiiiiiii ettt ettt e et et e e e 508
Finishing Folder SCanningcooiiiiiiiiiiiiii 508
GDL Text I/O Add-Omn ..oviiiiiiiiiiiiii e 509
OPening THlE L..ooviiii 509
Reading VAlUESiiiiiiiii 510
WHING VAIUES ..ouiiiiii i 511
ClOSING THLE .ottt 511
Property GDL Add-OMn ... 512
Open Property daAtADASEoiuiiiiiitiii e 512
Close Property databaseoiiiiiiiiiiiiiiii 513
Input to property database ..ottt 513
Output to Property databasec..iiiiiiiiiiiii 516
(€1 D) DI LY § B 5 5 (o3 o I 516
Opening an XML DOCUMENTouuiuiiiii e 517
Reading an XML DOCUMENLE 1..uuiuiiiiiiiiiiii e 518
Modifying an XML DOCUMENTuiitiiiiiiiiii e 522

GDL Reference Guide XXiv

GDL Reference Guide

Polygon Operations EXEENSIONo.iiuiiiiiiiii e 526
Opening a channel ... 526
Polygon container MAanagemENtouuiuuiiuniitii it 527
POlygon MAanagemENtiuuiiuiiiiiii e 527
Polygon OPEration SELLIESiuuiiuiiitii it 528
POLYGON OPEIAtIONS ...vuiiitiiiiiii e 528
Get 1eSUIING POIYZONS L..iuiiiiiiiiiii i 529
Closing Channel 530

AULOEXE GUIAE ©.ivtiiiiii e 530
Project info KeyWordso.oiiiiiiiiiii 530
GENELAL ..ot 532
TLAYOUL AULOTEXES ©.vuiviinitiititii it ettt ettt ettt et 532
DIAWING AULOTEXES L. .ivuiinitt ittt et e e e et e e e e e e e 532
ReEfErence tYPe AULOTEXES L.u.iuuiitiiitiit ittt ettt et e e e 533
MATKEL £FPE AULOTEXES ..ivuiiinittitti ittt ettt e et e e e e et e e e e et 533
Change Telated AULOLEXESuiiuuiiiiiiii et 533
Layout £evision related AULOTERESvuuiuuiuinit ittt ettt ettt ettt ettt ettt et 534

New GDL Features in ARCHICAD 20iiiiiiii e 534
Introducing NURBS ... 534
General NEW fEATUIESuiiutiiii e 534
Recommended updates of existing Ibrary Partsoooiiiiiiiiiiiiiiiiiii 536

TdEX 537

Syntax Listing of GDL COmmMAandsccoiiiiiiiiiiii e 537

GDL Reference Guide XXV

General Overview

GENERAL OVERVIEW

GDL is a parametric programming language, similar to BASIC. It describes 3D solid objects like doors, windows, furniture, structural
elements, stairs, and the 2D symbols representing them on the floor plan. These objects ate called library parts.

STARTING OUT

The needs of your design, your background in programming and your knowledge of descriptive geometry will all probably influence where
you start in GDL.

Do not start practicing GDL with complicated objectives in mind. Rather, try to learn GDL through experimenting step by step with all of its
features to best utilize them to your advantage. Follow the expertise level recommendations below.

If you are familiar with a programming language like BASIC, you can get acquainted with GDL by observing existing scripts. You can also learn
a lot by opening the library parts shipped with your software and taking a look at the 2D and 3D GDL scripts. Additionally, you can save floor
plan elements in GDL format and see the resulting script.

If you are not familiar with BASIC, but have played with construction blocks, you can still find your way in GDL through practice. We advise
trying the simplest commands right away and then checking their effect in the 3D window of the library part.

Several books and materials have been published on GDL and object library development.

* “Object Making with ARCHICAD” is the perfect guide for beginners.

* “Creating GDL Objects” e-Guide gives a basic overview of the object creation methods.

* David Nicholson Cole’s “GDL Cookbook” is the most popular course book for entry level and advanced GDL programmers for a long time.

* A more recent learning material is “GDL Handbook” by Andrew Watson for novice and experienced users as well.

* “GDL Adpanced Technical Standards” contains GRAPHISOFTs official standards for professional library developers; this document can be
downloaded after registration from GRAPHISOFT’s website: b#p:/ [www.graphisoft.com/ support/ developer/ . For guidelines of basic development,
see the section called “Basic Technical Standards” in this manual.

SCRIPTING

Library Part Structure

Every library part described with GDL has scripts, which are lists of the actual GDL commands that construct the 3D shape and the 2D
symbol. Library parts also have a description for quantity calculations.

Master script commands will be executed before each script.

GDL Reference Guide 1

http://www.graphisoft.com/support/developer/

General Overview

The 2D script contains parametric 2D drawing description. The binary 2D data of the library part (content of the 2D symbol window) can
be referenced using the FRAGMENT?2 command. If the 2D script is empty, the binary 2D data will be used to display the library part on
the floor plan.

The 3D script contains a parametric 3D model description. The binary 3D data (which is generated during an import or export operation)
can be referenced using the BINARY command.

The Properties script contains components and descriptors used in element, component and zone lists. The binary properties data described
in the components and descriptors section of the library part can be referenced using the BINARYPROP command. If the properties script
and the master script are empty, the binary properties data will be used during the list process.

The User Interface script allows the user to define input pages that can be used to edit the parameter values in place of the normal parameter list.
In the Parameter script, sets of possible values can be defined for the library part parameters.

The parameter set in the Parameters section are used as defaults in the library part settings when placing the library part on the plan.

In the Forward Migration script you can define the conversion logic which can convert placed instances of older elements.

In the Backward Migration script you can define a backward conversion to an older version of an element.

The Preview picture is displayed in the library part settings dialog box when browsing the active library. It can be referenced by the PICTURE
and PICTURE2 commands from the 3D and 2D script.

ARCHICAD provides a helpful environment to write GDL scripts, with on-the-fly visualization, syntax and error checking.

Analyze, Deconstruct and Simplify

No matter how complex, most objects you wish to create can be broken down into building blocks of simple geometric shapes. Always start
with a simple analysis of the desired object and define all the geometric units that compose it. These building blocks can then be translated into
the vocabulary of the GDL scripting language. If your analysis was accurate, the combination of these entities will form the desired object. To
make the analysis, you need to have a good perception of space and at least a basic knowledge of descriptive geometry.

GDL Reference Guide 2

General Overview

Window representations with different levels of sophistication

To avoid getting discouraged early on in the learning process, start with objects of defined dimensions and take them to their simplest but still
recognizable form. As you become familiar with basic modeling, you can increase the level of sophistication and get closer to the ideal form.
Ideal does not necessarily mean complicated. Depending on the nature of the architectural project, the ideal library part could vary from basic
to refined. The window on the left in the above illustration fits the style of a design visualization perfectly. The window on the right gives a
touch of realism and detail which can be used later in the construction documents phase of the project.

I E =
C O

Depending on your purpose, your custom parametric objects may vary in elaboration. Custom objects for internal studio use may be less refined
than the ones for general use or for commercial distribution.

Elaboration

If your symbols have little significance on the floor plan, or if parametric changes do not need to appear in 2D, then you can omit parametric
2D scripts.

Even if parametric changes are intended to be present in 2D, it is not absolutely necessary to write a parametric 2D script. You can perform
parametric modifications in the 3D Script window or use the 3D top view of the modified object as a new symbol and save the modified object
under a new name. Parametric changes to the default values will result in several similar objects derived from the original.

GDL Reference Guide 3

General Overview

The most complex and sophisticated library parts consist of parametric 3D descriptions with corresponding parametric 2D scripts. Any changes
in the settings will affect not only the 3D image of the object, but also its floor plan appearance.

Entry Level

These commands are easy to understand and use. They require no programming knowledge, yet you can create very effective new objects
using only these commands.

Simple Shapes

Shapes are basic geometric units that add up to a complex library part. They are the construction blocks of GDL. You place a shape in the
3D space by writing a command in the GDL script.

A shape command consists of a keyword that defines the shape type and some numeric values or alphabetic parameters that define its dimensions.
The number of values vaties by shape.

In the beginning, you can omit using parameters and work with fixed values only.

You can start with the following shape commands:

In 3D:

BLOCK, CYLIND, SPHERE, PRISM

In 2D:

LINE2, RECT2, POLY2, CIRCLE2, ARC2

Coordinate Transformations

Coordinate transformations are like moving your hand to a certain place before placing a construction block. They prepare the position,
orientation and scale of the next shape.

GDL Reference Guide 4

General Overview

BLOCK 1, 0.5, 0.5
ADDX 1.5
ROTY 30
BLOCK 1, 0.5, 0.5

The 3D window of the library part will optionally show you the home (G = global) and the current (. = local) position of the coordinate
system for any object present.

The simplest coordinate transformations are as follows:

In 3D:

ADDX, ADDY, ADDZ, ROTX, ROTY, ROTZ

In 2D:

ADD2, ROT2

The commands starting with ADD will move the next shape, while the ROT commands will turn it around any of its axes.
Intermediate Level

These commands are a bit more complex, not because they expect you to know programming, but simply because they describe more complex
shapes or more abstract transformations.

In 3D:
ELLIPS, CONE

GDL Reference Guide 5

General Overview

POLY ,LIN , PLANE, PLANE
PRISM ,CPRISM , SLAB, SLAB ,CSLAB_, TEXT
In 2D:

HOTSPOT2, POLY2 , TEXT2, FRAGMENT?2

These commands usually require more values to be defined than the simple ones. Some of them require status values to control the visibility
of edges and surfaces.

Coordinate Transformations

In 3D:

On top of the entry level transformations
MULX, MULY, MULZ, ADD, MUL, ROT

In 2D:
On top of the entry level transformations
MUL2
Example:
PRISM 4, 1, 3, O,
3, 3,
-3, 3,
-3, 0
ADDZ -1
MUL 0.666667, 0.666667, 1
PRISM 4, 1, 3, O,
3, 3,
-3, 3,
-3, 0
ADDZ -1
MUL 0.666667, 0.666667, 1
PRISM 4, 1, 3, O,
3, 3,
-3, 3,
-3, 0

The transformations starting with MUL will rescale the subsequent shapes by distorting circles into ellipses or spheres into ellipsoids. If used
with negative values, they can be used for mirroring. The commands in the second row affect all three dimensions of space at the same time.

GDL Reference Guide 6

General Overview

Advanced Level

These commands add a new level of complexity either because of their geometric shape, or because they represent GDL as a programming
language.

In 3D:

BPRISM BWALL CWALL XWALL
CROOF FPRISM SPRISM

EXTRUDE PYRAMID REVOLVE RULED
SWEEP TUBE TUBEA COONS
MESH MASS

LIGHT PICTURE

There are shape commands in this group which let you trace a spatial polygon with a base polygon to make smooth curved surfaces. Some
shapes require material references in their parameter list.

By using cutting planes, polygons and shapes, you can generate complex arbitrary shapes out of simple shapes. The corresponding commands
are CUTPLANE, CUTPOLY, CUTPOLYA, CUTSHAPE and CUTEND.

In 2D:
PICTUREZ2, POLYZ2 A, SPLINEZ, SPLINEZA
Flow Control and Conditional Statements
FOR - TO - NEXT

DO - WHILE,WHILE - ENDWHILE
REPEAT - UNTIL

IF - THEN - ELSE - ENDIF

GOTO, GOSUB

RETURN, END / EXIT

These commands should be familiar to anyone who has ever programmed a computer, but they are basic enough that you can understand
them without prior programming expetience.

They let you make repetitive script parts to place several shapes with little scripting, or let you make decisions based on prior calculations.

GDL Reference Guide 7

General Overview

FOR 1 =1 TO 5

PRISM 8, 0.05, %
-0.5, O, 15,
-0.5, -0.15, 15,
0.5, -0.15, 15,
T 1 %
0.45, O, 15,
0,42, 0.1 1o \;
-0.45, -0.1, 15,
-0.45, 0, 15

ADDZ 0.2

NEXT i

Parameters

At this stage of your expertise, you can replace fixed numeric values with variable names. This makes the object more flexible. These variables
are accessible from the library part’s Settings dialog box while working on the project.

Macro Calls

You are not limited to the standard GDL shapes. Any existing library part may become a GDL shape in its entirety. To place it, you simply call
(refer to) its name and transfer the required parameters to it, just as with standard shape commands.

Expert Level

By the time you have a good understanding of the features and commands outlined above, you will be able to pick up the few remaining
commands that you may need from time to time.

Note

The memory capacity of your computer may limit the file length of your GDL scripts, the depth of macro calls and the number of
transformations.

You will find additional information on the above GDL commands throughout the manual. HIML format help files are also available with
your software, giving a quick overview of the available commands and their parameter structure.

3D GENERATION

3D modeling is based on floating point arithmetics, meaning that there is no limit imposed on the geometric size of the model. Whatever size
it is, it retains the same accuracy down to the smallest details.

GDL Reference Guide 8

General Overview

The 3D model that you finally see on the screen is composed of geometric primitives. These primitives are stored in the memory of your
computer in binary format, and the 3D engine generates them according to the floor plan you created. The metamorphosis between the
architectural floor plan elements and the binary 3D data is called 3D conversion.

The primitives are the following:

* all the vertices of your building components

* all the edges linking the vertices

* all the surface polygons within the edges

Groups of these primitives are kept together as bodies. The bodies make up the 3D model. All of the features of 3D visualization - smooth
surfaces, cast shadows, glossy or transparent materials - are based on this data structure.

The 3D Space

The 3D model is created in three-dimensional space measured by the x, y and z axes of a master coordinate system whose origin is called
the global origin.

In Floor Plan view, you can see the global origin in the lower left corner of the worksheet if you open the program without reading a specific
document. In addition, the global origin defines the zero level of all the stories referred to in a floor plan document.

When you place an object into the design, the floor plan position will define its location along the x and y axes of this master coordinate system.
The location along the z axis can be set in the Object Settings dialog box or directly adjusted when placed in 3D. This location will be the base
and the default position of the local coordinate system of the object. The shapes described in the script will be positioned with reference
to this local coordinate system.

Coordinate Transformations

Every GDL shape is linked to the current position of the local coordinate system. For example, blocks are linked to the origin. The length,
width and height of the block are always measured in a positive direction along the three axes. Thus, the BLOCK command requires only three
parameters defining its dimensions along the axes.

How can you generate a shifted and rotated block? With the parameter structure of the BLOCK there is no way to do this. It does not have
parameters for shift and rotation.

The answer is to move the coordinate system to the correct position before issuing the BLOCK command. With the coordinate transformation
commands, you can pre-define its position and rotation around the axes. These transformations are not applied to the shapes already generated
and are only effective on subsequent shapes.

The GDL Interpreter

When a GDL script is executed, the GDL interpreter engine will detect the location, size, rotation angle, user defined parameters and the
mirrored state of the library part. It will then move the local coordinate system to the right position, ready to receive the GDL commands

GDL Reference Guide 9

General Overview

from the script of the library parts. Every time a command for a basic shape is read by the interpreter, it will generate the geometric primitives
that make up that particular shape.

When the interpreter has finished, the complete binary 3D model will be stored in the memory, and you can perform 3D projections, fly-
through renderings or sun studies on it.

ARCHICAD contains a pre-compiler and an interpreter for GDL. Interpretation of a GDL script uses the pre-compiled code. This feature
increases speed of the analysis. If the GDL script is modified, a new code is generated.

Data structures converted from other file formats (e.g., DXF, Zoom, Alias Wavefront) are stored in a binary 3D section of the library parts.
This section is referenced by the BINARY command from the GDL script.

The GDL Script Analysis

Users have no control over the order in which library parts placed on the floor plan are analyzed. The order of GDL script analysis is based
on the internal data structure; moreover, Undo and Redo operations as well as modifications may influence that order. The only exceptions to
this rule are special GDL scripts of the active library, whose names begin with "MASTER_GDL" or "MASTEREND_GDL".

Scripts whose name begins with "MASTER_GDL" are executed before starting a list process and after loading the active library.

Scripts whose name begins with "MASTEREND_GDL" are executed when the active library is to be changed (Load Libraries, Open a project,
New project, Quit).

These scripts are not executed when you edit library parts. If your library contains one or more such scripts they will all be executed in an
order that is not defined.

MASTER_GDL and MASTEREND_GDL scripts can include attribute definitions, initializations of GDL user global variables, 3D commands
(effective only in the 3D model), value list definitions (see the VALUES command) and GDL extension-specific commands. The attributes
defined in these scripts will be merged into the current attribute set (attributes with same names are not replaced, while attributes originated
from GDL and not edited in the program are always replaced).

GDL Reference Guide 10

GDL Syntax

GDL SyNTAX

This chapter presents the basic elements of GDL syntax, including statements, labels, identifiers, variables and parameters. Typographic rules are also explained in detail.

RULES OF GDL SyNTAX

GDL is not case sensitive; uppercase and lowercase letters are not distinguished, except in strings placed between quotation marks. The logical
end of a GDL script is denoted by an END / EXIT statement ot the physical end of the script.

STATEMENTS

A GDL program consists of statements. A statement can start with a keyword (defining a GDL shape, coordinate transformations or program
control flow), with a macro name, or with a variable name followed by an '=' sign and an expression.

LINE

The statements ate in lines separated by line-separators (end_of_line characters).

A comma (;) in the last position indicates that the statement continues on the next line. A colon () is used for separating GDL statements in
a line. After an exclamation mark (!) you can write any comment in the line. Blank lines can be inserted into a GDL script with no effect at
all. Any number of spaces or tabs can be used between the operands and operators. The use of a space or tab is obligatory after statement
keywords and macro calls.

LABEL

Any line can start with a label which is used as a reference for a subsequent statement. A label is an integer number or a constant string between
quotation marks, followed by a colon (). A string label is case sensitive. Labels are checked for single occurrence. The execution of the program
can be continued from any label by using a GOTO or GOSUB statement.

CHARACTERS

The GDL text is composed of the lower and uppercase letters of the English alphabet, any number and the following characters:

<space> _(underline) ~ ! : , ; . + - * / ~ =< ><=>=4# () [] { } \ @ & |(vertical
bar) " ' >~ ™7 7 M <end of line>

GDL Reference Guide 1

GDL Syntax

STRINGS

Any string of Unicode characters that is placed between quotation marks (", ', “,”, °, *), or any string of characters without quotation marks that
does not figure in the script as an identifier with a given value (macro call, attribute name, file name). Strings without quotation marks will be
converted to all caps, so using quotation marks is recommended. The maximum length allowed in a string is 255 charactets.

The '\' character has special control values. Its meaning depends on the next character.

A\ "\' char itself

\n new line

\t tabulator

\new line continue string in next line without a new line
\others not correct, results in warning

Example:

"This is a string"
‘washbasin 1'-6"*1'-2"
'Do not use different delimiters’

IDENTIFIERS

Identifiers are special character strings:

* they are not longer than 255 characters;

* they begin with a letter of the alphabet or a' ' or '~' character;

* they consist of letters, numbers and '_' or '~' characters;

* upper- and lowercase letters are considered identical.

Identifiers can be GDL keywords, global or local variables or strings (names). Keywords and global variable names are determined by the
program you’re using GDL in; all other identifiers can be used as variable names.

VARIABLES
GDL programs can handle numeric and string variables (defined by their identifiers), numbers and character strings.

There are two sets of variables: local and global.

GDL Reference Guide 12

GDL Syntax

All identifiers that are not keywords, global variables, attribute names, macro names or file names are considered local variables. If left
uninitialized (undefined), their value will be 0 (integer). Local variables are stacked with macro calls. When returning from a macro call, the
interpreter restores their values.

Global variables have reserved names (for the list of global variables see the section called “Global Variables™). They are not stacked during macro calls,
enabling the user to store special values of the modeling and to simulate return codes from macros. The user global variables can be set in any
script but they will only be effective in subsequent scripts. If you want to make sure that the desired script is analyzed first, set these variables in
the MASTER_GDL library part. All elements will always read these values set by the Master GDL first, unless their own scripts (caller object
or called macro) modify those values. There is no user global data exchange between the different interpretation instances. The other global

variables can be used in your scripts to communicate with the program. By using the command, you can assign a numeric or string value

to local and global vatiables.

PARAMETERS

Identifiers listed in a library part’s parameter list are called parameters. Parameter identifiers must not exceed 31 characters in length. And the
maximum number of parameters must not exceed 1024. Within a script, the same rules apply to parameters as to local variables.

Parameters of text-only GDL files are identified by letters A to Z.

SIMPLE TYPES

Variables, parameters and expressions can be of two simple types: numetic or string.

Numeric expressions are constant numbers, numeric variables or parameters, functions that return numeric values, and any combination of these in
operations. Numeric expressions can be integer or real. Integer expressions are integer constants, variables or parameters, functions that return
integer values, and any combination of these in operations which results in integers. Real expressions are real constants, variables or parameters,
functions that return real values, and any combination of these (or integer expressions) in operations which results in reals. A numeric expression
being an integer or a real is determined during the compilation process and depends only on the constants, variables, parameters and the
operations used to combine them. Real and integer expressions can be used the same way at any place where a numeric expression is required,
however, in cases where a combination of these may result in precision problems, a compiler warning appears (comparison of reals or reals and
integers using relational operators '=' or '<>', or boolean operators AND, OR, EXOR; IF or GOTO statements with real label expressions).
String excpressions are constant strings, string variables or parameters, functions that return strings, and any combination of these in operations
which result in strings.

DERIVED TYPES

Variables and parameters can also be arrays, and parameters can be value lists of a simple type.

GDL Reference Guide 13

GDL Syntax

Arrays ate one- ot two-dimensional tables of numeric and/or string values, which can be accessed directly by indexes.
Value lists are sets of possible numeric or string values. They can be assigned to the parameters in the value list script of the library part or in
the MASTER_GDL script, and will appear in the parameter list as a pop-up menu.

CONVENTIONS USED IN THIS BOOK

[aaa]
Square brackets mean that the enclosed elements are optional (if they are bold, they must be entered as shown).
{n}

command version number

Previous element may be repeated

|

Exclusive or relation between parameters of a command
variable

Any GDL vatiable name

prompt

Any character string (must not contain quote character)
bold_string

UPPERCASE_STRING

special characters

Must be entered as shown
other_lowercase_string_in_parameter_list

Any GDL expression

GDL Reference Guide 14

Coordinate Transformations

COORDINATE TRANSFORMATIONS

This chapter tells you about the types of transformations available in GDL (moving, scaling and rotating the coordinate system) and the way
they are interpreted and managed.

About Transformations

In GDL, all the geometric elements are linked strictly to the local coordinate system. GDL uses a right-handed coordinate system. For example,
one corner of a block is in the origin and its sides are in the x-y, x-z and y-z planes.

Placing a geometric element in the desired position requires two steps. First, move the coordinate system to the desired position. Second,
generate the element. Every movement, rotation or stretching of the coordinate system along or around an axis is called a transformation.
Transformations are stored in a stack; interpretation starts from the last one backwards. Scripts inherit this stack; they can insert new elements
onto it but can only delete the locally defined ones. It is possible to delete one, more or all of the transformations defined in the current script.
After returning from a script, the locally defined transformations are removed from the stack.

2D TRANSFORMATIONS
These are the equivalents in the 2D space of the ADD, MUL and ROTZ 3D transformations.

ADD2

ADD2 x, y
Example:
ADD2 a, b
Y
Y
- X
b -
-
X
a

MUL2
MUL2 x, vy

GDL Reference Guide 15

Coordinate Transformations

ROT2

ROT2 alpha
Example:

ROT2 beta

Y
~
+
\ petd

3D TRANSFORMATIONS

ADDX
ADDX dx

ADDY
ADDY dy

ADDZ
ADDZ dz

Moves the local coordinate system along the given axis by dx, dy or dz respectively.

ADD
ADD dx, dy, dz
Replaces the sequence ADDX dx: ADDY dy: ADDZ dz.

Example:
ADD a, b, c

GDL Reference Guide 16

Coordinate Transformations

z

It has only one entry in the stack, thus it can be deleted with DEL 1.

MULX
MULX mx

MULY
MULY my

MULZ
MULZ mz

Scales the local coordinate system along the given axis. Negative mx, my, mz means simultaneous mirroring,

MUL

MUL mx, my, mz
Replaces the sequence MULX mx: MULY my: MULZ mz. It has only one entry in the stack, thus it can be deleted with DEL 1.

ROTX

ROTX alphax

ROTY
ROTY alphay

GDL Reference Guide

17

Coordinate Transformations

ROTZ
ROTZ alphaz
Rotates the local coordinate system around the given axis by alphax, alphay, alphaz degrees respectively, counterclockwise.

Example:
z
N
Y
+
\ beta
X
ROTZ beta

ROT

ROT x, y, z, alpha

Rotates the local coordinate system around the axis defined by the vector (x, y, z) by alpha degrees, counterclockwise. It has only one entry
in the stack, thus it can be deleted with DEL 1.

XFORM

XFORM all, al2, al3, al4,
a2l, a22, a23, a24,
a3l, a32, a33, a34

Defines a complete transformation matrix. It is mainly used in automatic GDL code generation. It has only one entry in the stack.
xX'=all*x+al2*y+al3*z+al4
y =a2l *x+a22%y+a23 %7 +a24
z' =a31 *x 4+ a32*y + a33 * z + a34

GDL Reference Guide 18

Coordinate Transformations

Example:
A=60
B=30
XFORM 2, COS(A), COS(B)*0.6, O,
0, SIN(A), SIN(B)*0.6, O,
0, 0, 1, O
1

BLOCK 1, 1,

MANAGING THE TRANSFORMATION STACK
DEL

DEL n [, begin with]
Deletes n entries from the transformation stack.

If the begin_with parameter is not specified, deletes the previous n entries in the transformation stack. The local coordinate system moves
back to a previous position.

If the begin_with transformation is specified, deletes n entries forward, beginning with the one denoted by begin_with. Numbering starts with
1. If the begin_with parameter is specified and n is negative, deletes backward.

If fewer transformations were issued in the current script than denoted by the given n number argument, then only the issued transformations
are deleted.

DEL TOP
DEL TOP
Deletes all current transformations in the current script.

NTR
NTR ()

Returns the actual number of transformations.

GDL Reference Guide 19

Coordinate Transformations

Example:

\
BLOCK 1, 1, 1
ADDX 2
ADDY 2.5
ADDZ 1.5
ROTX -60
ADDX 1.5
BLOCK 1, 0.5, 2
DEL 1, 1 ! Deletes the ADDX 2 transformation
BLOCK 1, 0.5, 1
DEL 1, NTR() - 2 ! Deletes the ADDZ 1.5 transformation
BLOCK 1, 0.5, 2
DEL -2, 3 ! Deletes the ROTX -60 and ADDY 2.5 transformations

BLOCK 1, 0.5, 2

GDL Reference Guide 20

3D Shapes

3D SHAPES

This chapter covers all the 3D shape creation commands available in GDL, from the most basic ones to the generation of complex: shapes from polylines. Elements for
visualization (light sources, pictures) are also presented here, as well as the definition of text to be displayed in 3D. Furthermore, the primitives of the internal 3D data
structure consisting of nodes, vectors, edges and bodies are discussed in detail, followed by the interpretation of binary data and guidelines for using cutting planes.

BASIC SHAPES
BLOCK

BLOCK a, b, c
BRICK

BRICK a, b, c

e

X

The first corner of the block is in the local origin and the edges with lengths a, b and ¢ are along the x-, y- and z-axes, respectively. Zero values
create degenerated blocks (rectangle or line).
Restriction of parameters:

a > 0, b >0, ¢c >0
a+b+c >0

GDL Reference Guide 21

3D Shapes

CYLIND
CYLIND h, r

X
Right cylinder, coaxial with the z-axis with a height of h and a radius of r.
If h=0, a circle is generated in the x-y plane.
If r=0, a line is generated along the z axis.
SPHERE
SPHERE r

A sphere with its center at the origin and with a radius of 1.

GDL Reference Guide 22

3D Shapes

ELLIPS
ELLIPS h, r

Half ellipsoid. Its cross-section in the x-y plane is a circle with a radius of r centered at the origin. The length of the half axis along the z-axis is h.

Excample: Hemisphere
ELLIPS h, r

GDL Reference Guide 23

3D Shapes

CONE
CONE h, rl, r2, alphal, alpha2
z z
%6
‘\Q
V)
r2
Sy h
,0,567
r1

Frustum of a cone where alphal and alpha2 are the angles of inclination of the end surfaces to the z axis, r1 and r2 are the radii of the end-
circles and h is the height along the z axis.

If h=0, the values of alphal and alpha2 are disregarded and an annulus is generated in the x-y plane.
alphal and alpha2 are in degrees.
Restriction of parameters:

0 < alphal < 180° and 0 < alpha2 < 180°

Example: A regular cone
CONE h, r, 0, 90, 90

PRISM
PRISM n, h, x1, yl, ..., xn, yn
Right prism with its base polygon in the x-y plane (see the parameters of the POLY command and the POLY_ command). The height along
the z-axis is abs(h). Negative h values can also be used. In that case the second base polygon is below the x-y plane.
Restriction of parameters:
n >= 3

GDL Reference Guide 24

3D Shapes

%A n \/ 2
X 1
PRISM_
PRISM n, h, x1, yl, sl, ..., xn, yn, sn
Similar to the PRISM command, but any of the horizontal edges and sides can be omitted.
Restriction of parameters:
n >3
si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create segments
and arcs in the polyline using special constraints.
See Status Codes for details.

GDL Reference Guide 25

3D Shapes

Example 1: Solid and hollow faces

PRISM 4,1,
0,0,15,
1,1,15,
2,0,15,
1,3,15

PRISM 4,1,

GDL Reference Guide

26

3D Shapes

Example 2: Holes in the polygon

ROTX 90
PRISM 26, 1.2,
0.3, 0, 15,
0.3, 0.06, 15,
0.27, 0.06, 15,
0.27, 0.21, 15,
0.25, 0.23, 15,
~0.25, 0.23, 15, BBB
-0.27, 0.21, 15,
-0.27, 0.06, 15,
-0.3, 0.06, 15,
-0.3, O, 15,
0.3, 0, -1, 'End of contour
0.10, 0.03, 15,
0.24, 0.03, 15,
0.24, 0.2, 15,
0.10, 0.2, 15,
0.10, 0.03, -1, 'End of first hole
0.07, 0.03, 15,
0.07, 0.2, 15,
-0.07, 0.2, 15,
-0.07, 0.03, 15,
0.07, 0.03, -1, 'End of second hole
-0.24, 0.03, 15,
-0.24, 0.2, 15,
-0.1, 0.2, 15,
-0.1, 0.03, 15,
-0.24, 0.03, -1 'End of third hole

GDL Reference Guide 27

3D Shapes

Example 3: Curved surface

R=1

H=3

PRISM 9, H,
-R,
cos
cos
Ccos

180
210
240

COs
COos
COS
R,

300
330
360

CPRISM_

CPRISM_ top material, bottom material,

n, h,
x1l, vyl,

(180) *R,
(210) *R
(240) *R,
COS (270) *R,
(300) *R
(330) *R,
(360) *R,

sl,

R,
SIN(180)
SIN(210)
SIN(240)
SIN(270)
SIN(300)
SIN(330)
SIN(360)
R,

., Xn,

*R,
*R

*R,
*R,
*R

*R,
*R,

yn,

15,
15,
15,
15,
15,
15,
15,
15,
15

sSn

T

N

R=1

H=3

PRISM 9, H,
-R,
COS (180) *R,
COS (210) *R
COS (240) *R,
COS (270) *R,
COS (300) *R
C0OS (330) *R,
COS (360) *R,

R,

side material,

R,
SIN(180) *R,
SIN(210) *R
SIN (240) *R,
SIN(270) *R,
SIN(300) *R
SIN(330) *R,
SIN(360) *R,
R,

15,
64+15,
64+15,
64+15,
64+15,
64+15,
64+15,
64+15,
15

Extension of the PRISM_ command. The first three parameters ate used for the material name/index of the top, bottom and side surfaces.
The other parameters are the same as above in the PRISM_ command.

Restriction of parameters:

GDL Reference Guide

28

3D Shapes

n >= 3
See also the section called “Materials”.

si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create segments
and arcs in the polyline using special constraints.

See Status Codes for details.

Excample: Material referencing a predefined material by name, index and global variable

S~—=
&5

CPRISM "Mtl-Iron", 0, SYMB MAT,

13, 0.2,
0, 0, 15,
2, 0, 15,
2, 2, 15,
0, 2, 15,
o, 0, -1, lend of the contour
0.2, 0.2, 15,
1.8, 0.2, 15,
1.0, 0.9, 15,
0.2, 0.2, -1, lend of first hole
0.2, 1.8, 15,
1.8, 1.8, 15,
1.0, 1.1, 15,
0.2, 1.8, -1 lend of second hole
CPRISM_ {2}
CPRISM {2} top material, bottom material, side material,
n, h,

x1l, yl, alphal, sl, matl,

xn, yn, alphan, sn, matn

GDL Reference Guide 29

3D Shapes

CPRISM_ {2} is an extension of the CPRISM_ command with the possibility of defining different angles and matetials for each side of the ptism.
The side angle definition is similar to the one of the CROOF_ command.
alphai: the angle between the face belonging to the edge i of the prism and the plane perpendicular to the base.

mati: material reference that allows you to control the material of the side surfaces.

CPRISM_ {3}

CPRISM {3} top material, bottom material, side material, mask,
n, h,
x1l, yl, alphal, sl, matl,

%ﬁ; yn, alphan, sn, matn
CPRISM_ {3} is an extension of the CPRISM_ {2} command with the possibility of controlling the global behavior of the generated prism.

mask: controls the global behavior of the generated prism.
mask = j1 + 2*j, + 4*Jj3, where eachjcan be 0 or 1.
j1: top edge in line elimination.
j2: bottom edge in line elimination.
j3: side edge in line elimination.

GDL Reference Guide 30

3D Shapes

Example:

PEN 1
mat = IND (MATERIAL, "Mtl-Aluminium")
FOR i=1 TO 4 STEP 1

IF i = 1 THEN mask 1+2+4

IF i = 2 THEN mask =1

IF i = 3 THEN mask = 2

IF i = 4 THEN mask = 4

CPRISM {3} mat, mat, mat, mask,

5,1,
0, 0, 0, 15, mat,
1, 0, 0, 15, mat,
1, 1, 0, 15, mat,
0, 1, 0, 15, mat,
0, 0, 0, -1, mat
BODY -1
DEL TOP
IF i = 1 THEN ADDY 1
IF i = 2 THEN ADDX -1
IF i = 3 THEN ADDX 1
NEXT i
CPRISM_ {4}
CPRISM {4} top material, bottom material, side material, mask,
n, h,

x1l, yl, alphal, sl, matl,

xn, yn, alphan, sn, matn
CPRISM_ {4} is an extension of the CPRISM_ {3} command with the possibility of using inline matetial definition, that means materials defined
in GDL script locally also can be used next to materials defined in global material definitions.

BPRISM _

BPRISM_top material, bottom material, side material,
n, h, radius,
x1l, vyl, si,

Xn, yn, sn

GDL Reference Guide 31

3D Shapes

A smooth curved prism, based on the same data structure as the straight CPRISM_ element. The only additional parameter is radius.

Detrived from the corresponding CPRISM_ by bending the x-y plane onto a cylinder tangential to that plane. Edges along the x axis are
transformed to circular arcs; edges along the y axis remain horizontal; edges along the z axis will be radial in direction.

See the BWALIL,_ command for details.

si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create segments
and arcs in the polyline using special constraints.

See Status Codes for details.

Excample: Curved prisms with the corresponding straight ones

BPRISM "Glass", "Glass", "Glass",
3, 0.4, 1, ! radius =1
0, 0, 15,
5, 0, 15,
1.3, 2, 15

GDL Reference Guide 32

3D Shapes

BPRISM
17,

e N oSN
Nej
(@)
~

w
~

N
ul
~

« NN

HONOO_NOYOR OO
o 0~

FPRISM_

FPRISM

"Concrete",

0.3,

~J
w
(€3]

14

O OSN N N~ N N N~ N~
~

OO UTUTJOOJdJRFREFEB®DNDNOODN

top material, bottom material,

"Concrete", "Concrete",

5,

15,

15,

15, \\\ _—

1o ——\
15,

15,
15,
15,
15,
15,
-1,
15,
15,
15,
15,
15,
-1

NG

side material, hill material,

n, thickness, angle,_hilliheight,

x1,

vl,

sl,

Xn, yn, sn

Similar to the PRISM_ command, with the additional hill_material, angle and hill_height parameters for forming a ramp on the top.

hill material: the side material of the ramp part.

angle: the inclination angle of the ramp side edges.

Restriction: 0 <= angle < 90.

If angle = 0, the hill side edges seen from an orthogonal view form a quarter circle with the current resolution (see the RADIUS command,
the RESOL command and the TOLER command).

hill height: the height of the ramp. Note that the thickness parameter represents the whole height of the prism.

GDL Reference Guide

33

3D Shapes

si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create segments
and arcs in the polyline using special constraints.

Restriction of parameters:
n >= 3, hill height < thickness

See Status Codes for details.

hiII_heighﬁ

thickness

=

Excample 1: Prism with curved ramp

RESOL 10
FPRISM "Roof Tile", "Brick-Red", "Brick-White", "Roof Tile",
"4, 1.5, 0, 1.0, langle = 0
0, 0, 15,
5, 0, 15,
5, 4, 15,
0, 4, 15

GDL Reference Guide 34

3D Shapes

Example 2: Prism with straight ramp

FPRISM "Roof Tile", "Brick-Red", "Brick-White",
"Roof Tile",
10, 2, 45, 1,

15,

15,

15,

15,

-1,

15,

15,

15,

15,

-1

~

~

PRSP OOOONO
NN NDOUUTOTO O
NS NS SN S S S S S S N

N N N N N SN S~ 0~

HPRISM _

HPRISM top mat, bottom mat, side mat,
hill mat,
n, thickness, angle, hill height, status,
x1l, vyl, s1,

Xn, yn, sn

Similar to FPRISM_, with an additional parameter controlling the visibility of the hill edges.

status: controls the visibility of the hill edges:
0: hill edges are all visible (FPRISM_)

GDL Reference Guide

35

3D Shapes

1: hill edges are invisible

SPRISM_

SPRISM top material, bottom material, side material,
n, xb, vyb, xe, ye, h, angle,
x1l, vyl1, s1i,

Xn, yn, sn
Extension of the CPRISM_ command, with the possibility of setting the upper polygon non-parallel with the x-y plane. The upper plane

definition is similar to the plane definition of the CROOF_ command. The height of the prism is defined at the reference line. Upper and
lower polygon intersection is forbidden.

xb, yb, xe, ye: reference line (vector) starting and end coordinates.
angle: rotation angle of the upper polygon around the given oriented reference line in degrees (CCW).

si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create segments
and arcs in the polyline using special constraints.

See Status Codes for details.

Note: All calculated z coordinates of the upper polygon nodes must be positive or 0.

GDL Reference Guide 36

3D Shapes

Example:

SPRISM 'Grass', 'Earth', 'Earth',

6,
o, 0, 11, 6, 2, -10.0,
0, 0, 15,
10, 1, 15,
11, o, 15,
5, 7, 15,
4.5, 5.5, 15,
1, 6, 15
SPRISM_ {2}
SPRISM {2} top material, bottom material, side material,
n,

xtb, ytb, xte, yte, topz, tangle,

xbb, ybb, xbe, ybe, bottomz, bangle,

x1l, yl, sl, matl,

xn, yn, sn, matn
Extension of the SPRISM_ command, with the possibility of having an upper and lower polygon non-parallel with the x-y plane. The definition
of the planes is similar to the plane definition of the CROOF_ command. The top and bottom of the prism is defined at the reference line.
Upper and lower polygon intersection is forbidden.

xtb, ytb, xte, yte: reference line (vector) of the top polygon starting and end coordinates.
topz: the 'Z'level of the reference line of the top polygon.

tangle: rotation angle of the top polygon around the given oriented reference line in degrees (CCW).
xbb, ybb, xbe, ybe: reference line (vector) of the bottom polygon starting and end coordinates.
bottomz: the 'Z' level of the reference line of the bottom polygon.

bangle: rotation angle of the bottom polygon around the given oriented reference line in degrees (CCW).

si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create segments
and arcs in the polyline using special constraints.

See Status Codes for details.

GDL Reference Guide 37

3D Shapes

mati: material reference that allows you to control the material of the side surfaces.

Example:

SPRISM {2} 'Grass', 'Earth', 'Earth',
11, £z

o, o0, 11, 0, 30, -30.0,

o, o0, 0, 11, 2, 30.0,

0, 0, 15, IND (MATERIAL, 'C10'),
10, 1, 15, IND (MATERIAL, 'Cl1'),
11, 6, 15, IND (MATERIAL, 'C12'),
5, 7, 15, IND (MATERIAL, 'C13'),
4, 5, 15, IND (MATERIAL, 'Cl4'),
1, 6, 15, IND (MATERIAL, 'C10'),
0, 0, -1, IND (MATERIAL, 'C15'),
9, 2, 15, IND (MATERIAL, 'C15'),
10, 5, 15, IND (MATERIAL, 'C15'), 4fif?f7
6, 4, 15, IND (MATERIAL, 'C15'),
9, 2, -1, IND (MATERIAL, 'C15')

SPRISM_ {3}

SPRISM {3} top material, bottom material, side material, mask,

nl

xtb, ytb, xte, yte, topz, tangle,
xbb, ybb, xbe, ybe, bottomz, bangle,
x1l, yl, sl, matl,

xn, yn, sn, matn

Extension of the SPRISM_ {2} command with the possibility of controlling the global behavior of the generated prism.

mask: controls the global behavior of the generated prism.

mask = j1 + 2*j, + 4*J3, where each jcan be 0 or 1.

j1: top edge in line elimination.
j2: bottom edge in line elimination.
j3: side edge in line elimination.

GDL Reference Guide

38

3D Shapes

Example:

PEN
mat

1

IND (MATERIAL,

FOR i=1 TO 4 STEP 1
IF 1 = 1 THEN

IF

i = 2 THEN

IF 1 = 3 THEN
IF i = 4 THEN mask =

SPRISM {3} mat, mat, mat, mask,

5,
o, 0, 1,
o, 0, 1,
0, 0, 15,
1, 0, 15,
1, 1, 15,
0, 1, 15,
o, 0, -1,
BODY -1
DEL TOP
IF i = 1 THEN
IF i = 2 THEN
IF i = 3 THEN
NEXT i
SPRISM_{4}

SPRISM {4} top material, bottom material,

n,

xtb, ytb, xte, yte,
xbb, ybb, xbe, ybe,

mask =
mask =
mask =

mat,
mat,
mat,
mat,
mat

ADDY 1
ADDX -1
ADDX 1

"Mtl-Aluminium")

1+2+4
1
2
4

x1l, yl, sl, matl,

Xn, yn,

sn,

matn

side material, mask,

topz,
bottomz,

SPRISM_ {4} is an extension of the SPRISM_ {3} command with the possibility of using inline matetial definition, that means materials defined

in GDL script locally also can be used next to materials defined in global material definitions.

GDL Reference Guide

39

3D Shapes

SLAB
SLAB n, h, x1, vyl, z1, ..., xn, yn, zn
Oblique prism. The lateral faces are always perpendicular to the x-y plane. Its bases are flat polygons rotated about an axis parallel with the x-y
plane. Negative h values can also be used. In that case the second base polygon is below the given one.
No check is made as to whether the points ate really on a plane. Apices not lying on a plane will result in strange shadings/ renderings.
Restriction of parameters:

n >= 3

SLAB_

SLAB n, h, x1, yl, z1, sl, ..., xn, yn, zn, sn

Similar to the SLAB command, but any of the edges and faces of the side polygons can be omitted. This statement is an analogy of the PRISM_

command.

si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create segments
and arcs in the polyline using special constraints.

See Status Codes for details.

GDL Reference Guide 40

3D Shapes

CSLAB_

CSLAB _top material, bottom material, side material,
n, h,
x1l, y1l, z1, sl1l, ..., xn, yn, zn, sn

Extension of the SLAB_ command; the first three parameters ate used for the material name/index of the top, bottom and side surfaces. The
other parameters are the same as above in the SLAB_ command.

si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create segments
and arcs in the polyline using special constraints.

See Status Codes for details.
CWALL_

CWALL left material, right material, side material,
height, x1, x2, x3, x4, t,
maskl, mask?2, mask3, mask4,
nl
x startl, y lowl, x endl, y highl, frame shownl,

x_startn, y lown, x endn, y highn, frame shownn,
m,
al, bl, c¢c1, di,

am, bm, cm, dm

Left material, right material, side _material: Material names/indices for the left, right and side surfaces. (The left
and right sides of the wall follow the x axis.)

L] 0 J

The reference line of the wall is always transformed to coincide with the x axis. The sides of the wall are in the x-z plane.

height: The height of the wall relative to its base.

GDL Reference Guide 41

3D Shapes

x1l, x2, x3, x4: The projected endpoints of the wall lying on the x-y plane as seen below. If the wall stands on its own, then x1 =
x4 =0, x2 = x3 = the length of the wall.

t: the thickness of the wall.
t < 0: if the body of the wall is to the right of the x axis,
t > 0: if the body of the wall is to the left of the x axis,

t 0: if the wall is represented by a polygon and frames are generated around the holes.
Y

1

maskl, mask2, mask3, mask4: Control the visibility of edges and side polygons.
maskl, mask2, mask3, mask4 = j; + 2*j, + 4*j3 + 8*J4, whereeachjcanbeOor 1.

x1 x4 x3 x2

The j1, j2, j3, j4 numbers represent whether the vertices and the side are present (1) or omitted (0).

z
mask 3
(]
Y
mask 4 = = mask 2
j3
j2
ja \\
i X
mask 1

GDL Reference Guide 42

3D Shapes

n: the number of openings in the wall.

x_starti, y lowi, x endi, y highi: coordinates of the openings as shown below.

4
=
(2]
(5]
< -
X_start:
x_end <_%
>\

frame_showni:
1: if the edges of the hole are visible,
0: if the edges of the hole are invisible,
< 0: control the visibility of each of the opening’s edges separately: frame_showni = -(1%j1 + 2%j2 + 4%j3 + 8%j4 + 16%)5 + 32*j6 + 64*7
+ 128%8), where j1, j2, ..., j8 can be either 0 or 1. The numbers j1 to j4 control the visibility of the edges of the hole on the left-hand side of
the wall surface, while j5 to j8 affect the edges on the right-hand side, as shown on the illustration below.

GDL Reference Guide 43

3D Shapes

An edge that is perpendicular to the surface of the wall is visible if there are visible edges drawn from both of its endpoints.

j1

m: the number of cutting planes.

ai, bi, ci, di:

X

coefficients of the equation defining the cutting plane [ai*x + bi*y + ci*z = di]. Parts on the positive side of the
cutting plane (i.e., ai*x + bi*y + ci*z > di) will be cut and removed

[ai, bi, ci]

GDL Reference Guide

44

3D Shapes

BWALL
BWALL left material, right material, side material,
height, x1, x2, x3, x4, t, radius,
maskl, mask2, mask3, mask4,
n,
x startl, y lowl, x endl, y highl, frame shownl,

x_startn, y lown, x endn, y highn, frame shownn,
ml
al, bl, c1, di,

am, bm, cm, dm
A smooth curved wall based on the same data structure as the straight wall CWALL_ element. The only additional parameter is radius. Derived
from the corresponding CWALL_ by bending the x-z plane onto a cylinder tangential to that plane. Edges along the x axis are transformed to

circular arcs, edges along the y axis will be radial in direction, and vertical edges remain vertical. The curvature is approximated by a number of
segments set by the current resolution (see the RADIUS command, the RESOL command and the TOLER command).

See also the CWALL,_ command for details.

Example 1: a BWALL,_ and the corresponding CWALL,_

GDL Reference Guide 45

3D Shapes

ROTZ -60
1

Exanmple 2:
BWALL

O

™M~
T IS
SO A0

L0

O

~ (N O

0 1 N

~ SO~

O O N W0

nw | O ~

AN N o O
I~ M

< N
NN ~
O WAL ~

. L0
NN < o s
I9] < L0
NS N
QO MO N -
. n— O
M~ o~ e e

O — AN

O
o < A

46

GDL Reference Guide

3D Shapes

XWALL_

XWALL left material, right material, vertical material, horizontal material,
height, x1, x2, x3, x4,
vl, v2, y3, v4,
t, radius,
log height, log offset,
maskl, mask2, mask3, mask4,
n,
x startl, y lowl, x endl, y highl,
frame shownl, B B

x startn, y lown, x endn, y highn,
frame shownn, o o

m, -

al, bl, c1, di,

am, bm, cm, dm,
status

Extended wall definition based on the same data structure as the BWALL_ element.

vertical material, horizontal material: name or index of the vertical/horizontal side materials.
yl, y2, y3, y4: the projected endpoints of the wall lying in the x-y plane as seen below.

y

| X
x1 x2 x3 x4

log_height, log_offset: additional parameters allowing you to compose a wall from logs. Effective only for straight walls.

GDL Reference Guide 47

3D Shapes

IogheightI

logoffset %

status: controls the behavior of log walls

status = j1 + 2*jy + 4*j3 + 32*%jg + 64*j7 + 128*jg + 256*Jg, whetre eachjcan be 0 or 1.

j1: apply right side material on horizontal edges,
Jo: apply left side material on horizontal edges,
j3: start with half log,
Je: align texture to wall edges,
j7: double radius on bended side,
Jg: square log on the right side,
Jo: square log on the left side.
Example:
GDL Reference Guide 48

3D Shapes

XWALL "Surf-White", "Surf-White", "Surf-White", "Surf-White",

3.0,

0.0, 4.0, 4.0, 0.0,

0.0, 0.0, 0.3, 1.2,

1.2, 0.0,

0.0, 0.0,

15, 15, 15, 15,

3,

0.25, 0.0, 1.25, 2.5, -255,
1.25, 1.5, 2.25, 2.5, =255,
2.25, 0.5, 3.25, 2.5, -255, O

XWALL_{2}

XWALL {2} left material, right material, vertical material, horizontal material,
height, x1, x2, x3, x4,
vl, v2, y3, v4,
t, radius,
log height, log offset,
maskl, mask2, mask3, mask4,
n,
x startl, y lowl, x endl, y highl,
sill depthl, frame shownl,

x_startn, y lown, x endn, y highn,
sill depthn, frame shownn,

I‘nl

al, bl, cl1, di,

am, bm, cm, dm,
status

Extended wall definition based on the same data structure as the XWALL_ element.

silldepthi: logical depth of the opening sill. If the j9 bit of the frame_showni parameter is set, the wall side materials wraps the hole
polygons, silldepthi defining the separator line between them.

frame_showni:
1: if the edges of the hole are visible,
0: if the edges of the hole are invisible,

GDL Reference Guide 49

3D Shapes

< 0: control the visibility of each of the opening’s edges separately: frame_showni = -(1%j1 + 2%j2 + 4%j3 + 8%j4 + 16%)5 + 32*%j6 + 64*7
+ 128%j8 + 256%j9 + 512*j10), where j1, j2, ..., j10 can be either O or 1. There are two additional values to control the material wrapping.
The meaning of the jl, j2, ..., j8 values are the same as at the CWALL_ and XWALL_ commands. The j9 value controls the material of the
hole polygons. If j9 is 1, the hole inherits the side materials of the wall. The j10 value controls the form of the separator line between the
hole materials on the upper and lower polygons of the hole in case of a bent wall. If the j10 value is 1, the separator line will be straight,
otherwise curved.

XWALL_{3}
XWALL_ {3} left material, right material, vertical material, horizontal material,
height, x1, x2, x3, x4,
vl, v2, y3, v4,
t, radius,
log height, log offset,
maskl, mask2, mask3, mask4,
n,
x startl, y lowl, x endl, y highl,
sill depthl, frame shownl,

X startn, y lown, x endn, y highn,
sill depthn, frame shownn,

m, o

al, bl, c1, di,

am, bm, cm, dm,
status

XWALL_ {3} is an extension of XWALL,_{2} command with the possibility of hiding all edges of the log wall.

status: controls the behavior of log walls
status = j; + 2*jy + 4*j3 + 32*%jg + 64*%j7 + 128*%Jg + 256*j9 + 512*7j10, where each j can be 0 or 1.
j1: apply right side material on horizontal edges,
jo: apply left side material on horizontal edges,
j3: start with half log,
Je: align texture to wall edges,
j7: double radius on bended side,
jg: square log on the right side,
Jo: square log on the left side,

GDL Reference Guide 50

3D Shapes

J10: hide all edges of log wall.

Example:

I

/11

GDL Reference Guide 51

3D Shapes

"Clzl"

(@]
w
~

"Clzl"

* PI, 2 * PI,

N

=
~

"Clz",

* PI, 2 * PI,

ROTZ 90
XWALL {2} "C1i3", "ci1i",
© 2, 0, 4, 4, 0,
o, 0, 1, 1,
1, O,
0, 0,
15, 15, 15, 15,
1,
1, 0.9, 3, 2.1,
0,
0
DEL 1
ADDX 2
XWALL {2} "cC13", "ci1i",
-2, 0, 2
o, 0, 1, 1,
1, 2,
0, 0,
15, 15, 15, 15,
1,
1.6, 0.9, 4.6,
0,
0
ADDX 4
xWALL {2} "c1i3", "cil1i",
-2, 0, 2
’ Or lr lr
2
0
15, 15,

cCoRrRRFRORO
o~ ~
<
N
&
<

.1, 0.

0.

"Clzl"

(255 + 256),

"Clzl"
0,

3, —(255 + 256),

"Clz",
0,

3, -(255 + 256 + 512),

GDL Reference Guide

52

3D Shapes

BEAM

BEAM left material, right material, vertical material,
top material, bottom material,
height,
x1l, x2, x3, x4,
vl, v2, v3, v4, t,
maskl, mask2, mask3, mask4

Beam definition. Parameters are similar to those of the XWALIL_ element.

top_material, bottom material: top and bottom materials.

Excample:
BEAM 1, 1, 1, 1, 1,
0.3,
0.0, 7.0, 7.0, 0.0,
0.0, 0.0, 0.1, 0.1, 0.5,
15, 15, 15, 15
CROOF_

CROOF_ top material, bottom material, side material,
n, xb, yb, xe, ye, height, angle, thickness,
x1l, yl, alphal, si1,
xn, yn, alphan, sn
A sloped roof pitch with custom angle ridges.
top_material, bottom material, side material: name/index of the top, bottom and side material
n: the number of nodes in the roof polygon.

xb, yb, xe, ye: reference line (vector).

GDL Reference Guide

53

3D Shapes

height: the height of the roof at the reference line (lower surface).

angle: the rotation angle of the roof plane around the given oriented reference line in degrees (CCW).
thickness: the thickness of the roof measured perpendicularly to the plane of the roof.

xi, yi: the coordinates of the nodes of the roof’s lower polygon.

alphai: the angle between the face belonging to the edge i of the roof and the plane perpendicular to the roof plane, -90° < alphai <
90°. Looking in the direction of the edge of the propetly oriented roof polygon, the CCW rotation angle is positive. The edges of the roof
polygon are oriented propetly if, in top view, the contour is sequenced CCW and the holes are sequenced CW.

si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create segments
and arcs in the polyline using special constraints.

See Status Codes for details.
Restriction of parameters:
n >= 3

GDL Reference Guide 54

3D Shapes

Example 1:

CROOF_ 1, 1, 1, ! materials
9,
0, O,
1, 0, ! reference line (xb,yb) (xe,ye)
0.0, ! height
-30, ! angle
2.5, ! thickness
0o, 0, =60, 15,
10, 0, O, 15,
10, 20, -30, 15,
0o, 20, 0, 15,
o, 0, 0, -1,
2, 5, 0, 15,
8, 5, 0, 15,
5, 15, 0, 15,
2, 5, 0, -1

GDL Reference Guide 55

3D Shapes

Example 2:

L=0.25

r=(0.6"2+L"2)/ (2*L)

a=ASN(0.6/1r)

CROOF_ "Roof Tile", "Pine", "Pine",
le, 2, 0, O,

0, 0, 45, -0.2*SQR(2),
0, 0, 0, 15,
3.5, 0, 0, 15,
3.5, 3, -45, 15,
0, 3, 0, 15,
0, 0, 0, -1,
0.65, 1, -45, 15,
1.85, 1, 0, 15,
1.85, 2.4-L, O, 13,
1.25, 2.4-r, O, 900,
0, 2*a, 0, 4015,
0.65, 1, 0, -1,
2.5, 2, 45, 15,
3, 2, 0, 15,
3, 2.5, -45, 15,
2.5, 2.5, 0, 15,
2.5, 2, 0, -1

CROOF_{2}
CROOF_{2} top material, bottom material, side material,
n, xb, yb, xe, ye, height, angle, thickness,
x1l, yl, alphal, sl, matl,
xn, yn, alphan, sn, matn
Extension of the CROOF_ command with the possibility of defining different materials for the sides.

mati: material reference that allows you to control the material of the side surfaces.

GDL Reference Guide 56

3D Shapes

CROOF_{3}

CROOF_ {3} top material, bottom material, side material, mask,
n, xb, yb, xe, ye, height, angle, thickness,
x1l, yl, alphal, sl, matl,

xn, yn, alphan, sn, matn
Extension of the CROOF_{2} command with the possibility of controlling the global behavior of the generated roof.

mask: controls the global behavior of the generated roof.
mask = j; + 2*jy + 4*7j3,whereeachjcanbeOor 1l
j1: top edge in line elimination.
j2: bottom edge in line elimination.
j3: side edge in line elimination.

Example:

PEN 1
mat = IND (MATERIAL, "Mtl-Aluminium")
FOR i=1 TO 4 STEP 1

IF i = 1 THEN mask = 1+2+4
IF i = 2 THEN mask =1
IF i = 3 THEN mask = 2

IF i = 4 THEN mask = 4
CROOF {3} mat, mat, mat, mask,

5 0, 1, 2, 1, 3, -45, 0.3,
0, 0, 0, 15, mat,
i, 0, 0, 15, mat,
1, 1, 0, 15, mat,
0, 1, 0, 15, mat,
o, 0, 0, -1, mat

BODY -1

DEL TOP

IF i = 1 THEN ADD 0,1,1

IF i = 2 THEN ADDX -1

IF i = 3 THEN ADDX 1

NEXT i

GDL Reference Guide 57

3D Shapes

CROOF_{4}

CROOF_{4} top material, bottom material, side material, mask,

n, xb, yb, xe, ye, height, angle, thickness,

x1l, yl, alphal, sl, matl,

xn, yn, alphan, sn, matn
CROOF_{4} is an extension of the CROOF_{3} command with the possibility of using inline material definition, that means materials defined
in GDL script locally also can be used next to materials defined in global material definitions.

MESH

MESH a, b, m, n, mask,
z1l1l, =z12, ..., zlm,
z21, 222, ..., z2m,

znl, zn2, ..., znm

A simple smooth mesh based on a rectangle with an equidistant net. The sides of the base rectangle are a and b; the m and n points are along
the x and y axes respectively; zij is the height of the node.

Masking:

mask:
mask = j; + 4*j3 + 16*Js + 32*js + 64*j7, where eachjcanbe O or 1.
j1: base surface is present,

GDL Reference Guide 58

3D Shapes

j3: side surfaces are present,

js: base and side edges are visible,

Je: top edges are visible,

j7: top edges are visible, top surface is not smooth.

Restriction of parameters:
m>= 2, n >= 2

Example 1:

1+4+16+32+64,

2, 4, 6,
10, 3, 4
7 4 9 4 5 4
8, 10, 9
6, 7, 9,
4, 5, o,

Example 2:

GDL Reference Guide

59

3D Shapes

MESH 90, 100, 12, 8, 1+4+16+32+64,
17,16,15,14,13,12,11,10,10,10,10, 9,
16,14,13,11,10, 9, 9, 9,10,10,12,10,
16,14,12,11, 5, 5, 5, 5, 5,11,12,11,
16,14,12,11, 5, 5, 5, 5, 5,11,12,12,
16,14,12,12, 5, 5, 5, 5, 5,11,12,12,
16,14,12,12, 5, 5, 5, 5, 5,11,13,14,
17,17,15,13,12,12,12,12,12,12,15,15,
17,17,15,13,12,12,12,12,13,13,16,16

ARMC
ARMC rl, r2, 1, h, d, alpha
z
.
% r2
hfi /(:: I
r1 \‘/ X
y
d X

A piece of tube starting from another tube; parameters according to the figure (penetration curves are also calculated and drawn). The alpha
value is in degrees.
Restriction of parameters:

rl > r2 + d
rl <= l*sin(alpha) - r2*cos(alpha)

GDL Reference Guide 60

3D Shapes

Example:

ROTY 90
CYLIND 10,1
ADDZ 6

ARMC

i, 0.9, 3, 0, 0, 45

ADDZ -1

ROTZ -90

ARMC 1, 0.75, 3, 0, 0, 90
ADDZ -1

ROTZ -90

ARMC 1, 0.6, 3, 0, O, 135

ARME
ARME 1, rl, r2, h, d

A piece of tube starting from an ellipsoid in the y-z plane; parameters according to the figure (penetration lines are also calculated and drawn).
Restriction of parameters:

rl >= r2+d
1 >= h*sqrt(l-(r2-d)2/rl2)

GDL Reference Guide 61

3D Shapes

Example:

ELLIPS 3,4 P

FOR i=1 TO 6]
ARME 6,4,0.5,3,3.7-0.2*1
ROTZ 30

NEXT i

ELBOW
ELBOW rl, alpha, r2

A segmented elbow in the x-z plane. The radius of the arc is r1, the angle is alpha and the radius of the tube segment is r2. The alpha value
is in degrees.

Restriction of parameters:
rl > r2

GDL Reference Guide 62

3D Shapes

Example:

ROTY 90

ELBOW 2.5, 180, 1
ADDZ -4

CYLIND 4, 1

ROTZ -90

MULZ -1

ELBOW 5, 180, 1
DEL 1

ADDX 10

CYLIND 4, 1

ADDZ 4

ROTZ 90

ELBOW 2.5, 180, 1

PLANAR SHAPES IN 3D

The drawing elements presented in this section can be used in 3D scripts, allowing you to define points, lines, arcs, circles and planar polygons
in the three-dimensional space.

HOTSPOT

HOTSPOT x, y, z [, unID [, paramReference [, flags [, displayParam [, customDescription]]]]]

A 3D hotspot in the point (x, y, z).

unID: the unique identifier of the hotspot in the 3D script. It is useful if you have a variable number of hotspots.

paramReference: parameter that can be edited by this hotspot using the graphical hotspot based parameter editing method.

displayParam: parameter to display in the information palette when editing the paramRefrence parameter. Members of arrays can be
passed as well.

customDescription: custom description of the displayed parameter in the information palette. When using this option, displayParam
must be set as well (use paramReference for default).

See Graphical Editing Using Hotspots for using HOTSPOT.

HOTLINE
HOTLINE x1, yl, =zl, x2, y2, z2, unID

GDL Reference Guide 63

3D Shapes

A status line segment between the points P1 (x1,y1,z1) and P2 (x2,y2,22).

HOTARC
HOTARC r, alpha, beta, unID
A status arc in the x-y plane with its center at the origin from angle alpha to beta with a radius of .

Alpha and beta are in degrees.

LIN_

LIN x1, yl1, zl1, x2, y2, zZ2

A line segment between the points P1 (x1,y1,z1) and P2 (x2,y2,22).

RECT
RECT a, b

A rectangle in the x-y plane with sides a and b.
Restriction of parameters:

a > 0, b >0
POLY

POLY n, x1, yl, ..., xn, yn

GDL Reference Guide 64

3D Shapes

A polygon with n edges in the x-y plane. The coordinates of nodei are (xi, yi, 0).

Restriction of parameters:

n >= 3
POLY_
POLY n, x1, yl, sl, ..., xn, yn, sn

Similar to the normal POLY statement, but any of the edges can be omitted.

si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create segments
and arcs in the polyline using special constraints.

si = 0: the edge starting from the (xi,yi) apex will be omitted,
si = 1: the edge will be shown,
si = -1: isused to define holes directly.

Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See the section called “Additional Status Codes” for details.

GDL Reference Guide 65

3D Shapes

Restriction of parameters:
n >= 3
PLANE
PLANE n, x1, vyl, z1, ..., xn, yn, zn

A polygon with n edges on an arbitrary plane. The coordinates of nodei are (xi, yi, zi). The polygon must be planar in order to get a correct
shading/rendering result, but the interpreter does not check this condition.

Restriction of parameters:

n >= 3
PLANE_
PLANE n, x1, yl1, z1, sl, ..., xn, yn, zn, sn

Similar to the PLANE command, but any of the edges can be omitted as in the POLY_ command.
Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See the section called “Additional Status Codes”.
Restriction of parameters:

n>= 3
CIRCLE
CIRCLE r

A circle in the x-y plane with its center at the origin and with a radius of r.

GDL Reference Guide 66

3D Shapes

ARC
ARC r, alpha, beta

befa r

alpha

X

An arc (in Wireframe mode) or sector (in other modes) in the x-y plane with its center at the origin from angle alpha to beta with a radius

of r. alpha and beta are in degrees.

SHAPES GENERATED FROM POLYLINES

These elements let you create complex 3D shapes using a polyline and a built-in rule. You can rotate, project or translate the given polyline.

The resulting bodies are a generalization of some previously described elements like PRISM and CYLIND.

Shapes generated from a single polyline:

GDL Reference Guide

67

3D Shapes

¢ EXTRUDE

¢ PYRAMID

¢ REVOLVE

Shapes generated from two polylines:

¢ RULED

¢ SWEEP

e TUBE

e TUBEA

The first polyline is always in the x-y plane. Points are determined by two coordinates; the third value is the status (see below). The second
polyline (for RULED, SWEEP, TUBE and TUBEA) is a space curve. Apices are determined by three coordinate values.

Shape generated from four polylines:

¢ COONS

Shape generated from any number of polylines:

¢ MASS

General restrictions for polylines

* Adjacent vertices must not be coincident (except RULED).

* The polyline must not intersect itself (this is not checked by the program, but hidden line removal and rendering will be incorrect).
* The polylines may be cither open or closed. In the latter case, the first node must be repeated after the last one of the contour.
Masking

Mask values are used to show or hide characteristic surfaces and/or edges of the 3D shape. The mask values are specific to each element and
you can find a more detailed desctiption in their corresponding sections/chaptets.

mask:
mask = Jj; + 2*jy + 4*j3 + 8%jg + 16*Js5 + 32*jg + 64*3j7, where eachjcan be O or 1.
i1,2,j3, j4 represent whether the surfaces are present (1) or omitted (0).
j5, j0, j7 represent whether the edges are visible (1) or invisible (0).
J1: base surface.
jo2: top surface.
j3: side surface.
J4: other side surface.
js: base edges.
Jje: top edges.

GDL Reference Guide 68

3D Shapes

j7: cross-section/sutface edges are visible, sutface is not smooth.
To enable all faces and edges, set mask value to 127.
Status
Status values are used to state whether a given point of the polyline will leave a sharp trace of its rotation path behind.
0: latitudinal arcs/lateral edges starting from the node are all visible.
1: latitudinal arcs/lateral edges starting from the node are used only for showing the contour.
-1: for EXTRUDE only: it marks the end of the enclosing polygon or a hole, and means that the next node will be the first node of another hole.
Additional status codes allow you to create segments and arcs in the polyline using special constraints.
See the section called “Additional Status Codes” for details.
To create a smooth 3D shape, set all status values to 1. Use status = 0 to create a ridge.

Other values are reserved for future enhancements.

EXTRUDE

EXTRUDE n, dx, dy, dz, mask,
x1l, yl, si,

Xn, yn, sn

X

General prism using a polyline base in the x-y plane.

GDL Reference Guide 69

3D Shapes

The displacement vector between bases is (dx, dy, dz). This is a generalization of the PRISM command and the SLAB command. The base
polyline is not necessarily closed, as the lateral edges are not always perpendicular to the x-y plane. The base polyline may include holes, just
like PRISM_. It is possible to control the visibility of the contour edges.

n: the number of polyline nodes.

mask: controls the existence of the bottom, top and (in case of an open polyline) side polygon.
mask = Jj1 + 2*jp + 4*j3 + 16*js + 32*jg + 64*j7 + 128*jg, whereeachjcanbe O or 1.
j1: base surface is present,
jo2: top surface is present,
j3: side (closing) surface is present,
js: base edges are visible,
Je: top edges are visible.
j7: cross-section edges are visible, surface is articulated,
jg: cross-section edges are sharp, the surface smoothing will stop here in OpenGL and rendering,
si: status of the lateral edges or marks the end of the polygon or of a hole. You can also define arcs and segments in the polyline using
additional status code values:
0: lateral edge starting from the node is visible,
1: lateral edges starting from the node are used for showing the contour,
—-1: marks the end of the enclosing polygon or a hole, and means that the next node will be the first vertex of another hole.
Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See the section called “Additional Status Codes” for details.
Restriction of parameters:
n>2

GDL Reference Guide 70

3D Shapes

Example 1:

/

,

[Q\

(48]

+

O

—

+

<

+

[Q\

T+

—

-

<

NS N ~

N O OO N v N v O A
o QOO | OO o |
S~ s s s s -

NN AN v s s s SN~
oclll Il lToTooNO | ©
-

A L N L L N N N L

HO A NN OWMHONMNTOMAN

£3

a

)

o

E

bed

£3

71

GDL Reference Guide

3D Shapes

Example 2:

A=5: B=5: R=2: S=1:

EXTRUDE 28, -1, 0, 4,

o, 0, O,
D+R*sin (
D+R*sin (
D+R*sin (
D+R*sin (
D+R*sin (
D+R*sin (
D+R*sin (
A, B, O,
0o, B, 0O,
o, 0, -1,
c, ¢, 0,
D+S*sin (
D+S*sin (
D+S*sin (
D+S*sin (
D+S*sin (
D+S*sin (

PYRAMID

PYRAMID n, h, mask,

C=R-S : :
1+2+4+16+32,

D=A-R

E+S*sin
E+S*sin
E+S*sin

E+S*sin
E+S*sin
E+S*sin

x1,

vl,

(90),
(75),
(60),
E+S*sin (45),
(30),
(15),
(0),

sl,

PR RR e

N N N SN S~ N~

e e

N N N N N~

PR
<~~~ o~ ~

-7

E=B-R

xn,

yn,

Sn

GDL Reference Guide

72

3D Shapes

Pyramid based on a polyline in the x-y plane. The peak of the pyramid is located at (0, 0, h).
n: number of polyline nodes.

mask: controls the existence of the bottom and (in the case of an open polyline) side polygon.
mask = j; + 4*j3 + 16*Js5, where eachjcanbeOor 1.
j1: base surface is present,
j3: side (closing) surface is present,
Js: base edges are visible.
si: status of the lateral edges.

0: lateral edges starting from the node are all visible,
1: lateral edges starting from the node are used for showing the contour.

Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.

See the section called “Additional Status Codes” for details.
Restriction of parameters:
h >0 and n > 2

GDL Reference Guide

73

3D Shapes

Example:

PYRAMID 4, 1.5, 1+4+16,
-2, -2, 0,
-2, 2, 0,
2, 2, 0,
2, =2, 0
PYRAMID 4, 4, 21,
-1, -1, 0,
1, -1, 0,
1, 1, 0O,
-1, 1, 0
for i =1 to 4 ! four peaks
ADD -1.4, -1.4, 0
PYRAMID 4, 1.5, 21,
-0.25, -0.25, O,
0.25, -0.25, 0,
0.25, 0.25, 0,
-0.25, 0.25, 0
DEL 1
ROTZ 90
next 1
del 4

REVOLVE

REVOLVE n, alpha, mask, x1, yl, sl, ..., xn,

yn,

Sn

GDL Reference Guide

74

3D Shapes

Surface generated by rotating a polyline defined in the x-y plane around the x axis. The profile polyline cannot contain holes.
n: number of polyline nodes.
alpha: rotation angle in degrees

mask: controls the existence of the bottom, top and (in the case of alpha < 360°) side polygons.
mask = Jj1 + 2*%Jo + 4*j3 + 8%y + 16*Js + 32*%jg + 64*j7 + 128%*jg + 256*Jg, where each jcan be O or 1.
j1: closing disc at first point is present,
j2: closing disc at last point is present,
j3: base closing side (in profile plane) is present,
Ja: end closing side (in revolved plane) is present,
js: base edges (in profile plane) are visible,
Je: end edges (in revolved plane) are visible,
j7: cross-section edges ate visible, surface is articulated,
jg: horizontal edge in line elimination,
jg: vertical edge in line elimination.
si: status of the latitudinal arcs.
0: latitudinal arcs starting from the node are all visible,

GDL Reference Guide 75

3D Shapes

1: latitudinal arcs starting from the node are used for showing the contour,
2: when using ARCHICAD or Z-buffer Rendering Engine and setting Smooth Surfaces, the latitudinal edge belonging to this point defines
a break. This solution is equivalent to the definition of additional nodes. The calculation is performed by the compiler. With other rendering
methods, it has the same effect as using 0.

Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.

See the section called “Additional Status Codes” for details.

Restriction of parameters:

n >= 2
yi >= 0.0
yi = 0.0 and yij+1 = 0.0 cannot stand at the same time

(i.e., the y value of two neighboring nodes cannot be zero at the same time).

Example 1:

GDL Reference Guide 76

3D Shapes

ROTY -90
REVOLVE 22, 360, 1+64,

0, 1.982, 0,

0.093, 2, 0,
0.144, 1.845, O,
0.220, 1.701, O,
0.318, 1.571, O,
0.436, 1.459, O,
0.617, 1.263, O,
0.772, 1.045, O,
0.896, 0.808, O,
0.987, 0.557, O,
1.044, 0.296, O,
1.064, 0.030, O,
1.167, 0.024, O,
1.181, 0.056, O,
1.205, 0.081, O,
1.236, 0.096, O,
1.270, 0.1, 0,
1.304, 0.092, O,
1.333, 0.073, O,
1.354, 0.045, O,
1.364, 0.012, O,
1.564, O, 0

GDL Reference Guide 77

3D Shapes

Example 2:

GDL Reference Guide 78

3D Shapes

workaround without status code 2: the same result with status code 2:

ROTY -90 ROTY -90

REVOLVE 26, 180, 16+32, REVOLVE 18, 180, 48,
7, 1, 0, 7, 1, 0,
6.0001, 1, 1, o, 1, 2,
6, 1, 0, 5.5, 2, 2,
5.9999, 1.0002, 1, 5, 1, 2,
5.5001, 1.999s8, 1, 4, 1, 2,
5.5, 2, 0, 3+cos (15), 1l+sin(15), 1,
5.4999, 1.9998, 1, 3+cos (30), 1+sin(30), 1,
5.0001, 1.0002, 1, 3+cos (45), 1l+sin(45), 1,
5, 1, 0, 3+cos (60), 1l+sin(60), 1,
4.9999, 1, 1, 3+cos (75), 1l+sin(75), 1,
4.0001, 1, 1, 3, 2, 1,
4, 1, 0, 3+cos (105), 1+sin(105), 1,
3+cos (15), 1+sin(l5), 1, 3+cos (120), 1+sin(120), 1,
3+cos (30), 1+sin (30), 1, 3+cos (135), 1+sin(135), 1,
3+cos (45), l+sin (45), 1, 3+cos (150), 1+sin(150), 1,
3+cos (60), l+sin (60), 1, 3+cos (165), 1l+sin(165), 1,
3+cos (75), 1l+sin(75), 1, 2, 1, 2,
3, 2, 1, 1, 1, O
3+cos (105), 1+sin(05), 1,
3+cos (120), 1+sin(120), 1,
3+cos (135), 1+sin(135), 1,
3+cos (150), 1+sin(150), 1,
3+cos (165), 1l+sin(l65), 1,
2, 1, 0,
1.9999, 1, 0,
1, 1, 0

REVOLVE{2}

REVOLVE{2} n, alphaOffset, alpha, mask, sideMat,
x1l, yl, sl, matl, ..., xn, yn, sn, matn

Advanced version of REVOLVE. The profile polygon will always be closed and may have holes. The start angle and the face materials are
controllable.

alphaOffset: rotation start angle.

GDL Reference Guide 79

3D Shapes

alpha: rotation angle length in degrees, may be negative.

mask: controls the existence of the bottom, top and (in the case of alpha < 360°) side polygons.
mask = 4*j3 + 8%j4 + 16*js + 32*jg + 64*j7 + 128%3jg + 256%]j9, where each j can be 0 or 1.
j3: base closing side (in profile plane) is present,
ja: end closing side (in revolved plane) is present,
Js: base edges (in profile plane) are visible,
Jje: end edges (in revolved plane) are visible,
j7: cross-section edges are visible, surface is articulated,
js: horizontal edge in line elimination,
Jo: wvertical edge in line elimination.
sideMat: material of the closing faces.

mati: material of the face generated from the i-th edge.

REVOLVE{3}
REVOLVE{3} n, alphaOffset, alpha, betaOffset, beta, mask, sideMat,

x1l, yl, sl, matl, ..., xn, yn, sn, matn
REVOLVE{3} is an extension of the REVOLVE {2} command with the possibility of defining two snap position. During the revolution the
path of each point of the base polyline is a circular atc, which is approximated by a polyline. With REVOLVE{3} two snap location can be
defined whete polyline exactly fits the citcle. With REVOLVE{2} this two snap locations are at the beginning and the end of the revolution.
With REVOLVE {3} the end points ate not necessatily on the citcle but simply cut at end planes.

betaOffset: Angle defining the first snap location. The defined angle need not be in the range of revolution.

beta: Angle defining the second snap location relative to the first snap location. May be negative. The defined angle need not be in the
range of revolution.

GDL Reference Guide 80

3D Shapes

Example:

revolve {2} snap positions at ends

resol 8
revolve{2} 4,
10, 335, ! alphaOffset, alpha
444, 2,
4,
3’ 4’ 2’
6,

14
4
4

NN NN

0, 6, 2,
! reference circle
resol 72
revolve{2} 4,
0, 360, ! alphaOffset, alpha
444, 0,
-0.01, 3.99, 2, O,
0, 3.99, 2, 0,
o, 4, 2, O,
-0.01, 4, 2, 0

revolve {3} custom snap positions

resol 8
revolve{3} 4,

10, 335, ! alphaOffset,

2’ 4
3’ 4’ 2’ 4
2,

14

DN NN

0o, 6, 2,
! reference circle
resol 72
revolve{2} 4,
0, 360, ! alphaOffset,
444, 0,
-0.01, 3.99, 2, O,
0, 3.99, 2, 0,
o, 4, 2, O,
-0.01, 4, 2, O

alpha
67.5, 100, ! betaOffset, beta
444, 2

alpha

GDL Reference Guide

81

3D Shapes

REVOLVE{4}

REVOLVE{4} n, alphaOffset, alpha, betaOffset, beta, mask, sideMat,
x1l, yl1, sl, matl, ..., xn, yn, sn, matn

REVOLVE {4} is an extension of the REVOLVE {3} command with the possibility of hiding all edges.

mask: controls the existence of the bottom, top and (in the case of alpha < 360°) side polygons.
mask = 4*j3 + 8*jy + 16*Js5 + 32*%jg + 64*j7 + 128*%jg + 256*Jg + 512*j10, where eachjcanbe O or 1.
j3: base closing side (in profile plane) is present,
Ja: end closing side (in revolved plane) is present,
Js: base edges (in profile plane) are visible,
Jje: end edges (in revolved plane) are visible,
j7: cross-section edges are visible, surface is articulated,
js: horizontal edge in line elimination,
Jo: wvertical edge in line elimination,
J10: hide all edges of revolve.

REVOLVE{5}
REVOLVE{5}n, alphaOffset, alpha, betaOffset, beta, mask, sideMat,
x1l, yl, sl, matl, ..., xn, yn, sn, matn
REVOLVE{5} is an extension of the REVOLVE {4} command with the possibility of using inline matetial definition, that means matetials
defined in GDL script locally also can be used next to materials defined in global material definitions.

RULED

RULED n, mask,
ul, v1l, sl1, ..., un, vn, sn,
x1l, yl1, z1, ..., xn, yn, zn

RULED{2}
RULED{2} n, mask,
ul, vl1l, sl1, ..., un, vn, sn,

xl, y1l, =z1, ..., xn, yn, zn

GDL Reference Guide 82

3D Shapes

j1

2 15
RULED is a surface based on a planar curve and a space curve having the same number of nodes. The planar curve polyline cannot have any
holes. Straight segments connect the corresponding nodes of the two polylines.
This is the only GDL element allowing the neighboring nodes to overlap.

The second version, RULED {2}, checks the direction (clockwise or counterclockwise) in which the points of both the top polygon and base
polygon were defined, and reverses the direction if necessary. (The original RULED command takes only the base polygon into account, which
can lead to errors.)

n: number of polyline nodes in each curve.
ui, wvi: coordinates of the planar curve nodes.
xi, yi, zi: coordinates of the space curve nodes.

mask: controls the existence of the bottom, top and side polygon and the visibility of the edges on the generator polylines. The side polygon
connects the first and last nodes of the curves, if any of them are not closed.
mask = Jj1 + 2*jy + 4*J3 + 16*js + 32*jg + 64*j7, where eachjcanbe O or 1.
j1: base surface is present,
jo: top surface is present (not effective if the top surface is not planar),

GDL Reference Guide 83

3D Shapes

j3: side surface is present (a planar quadrangle or two triangles),
js: edges on the planar curve are visible,

Jje: edges on the space curve are visible,

j7: edges on the surface are visible, surface is not smooth.

si: status of the lateral edges.
0: lateral edges starting from the node are all visible,

1: lateral edges starting from the node are used for showing the contour.

Restriction of parameters:
n>1

GDL Reference Guide

84

3D Shapes

Example:

R=3

RULED 16,

cos (22. 5)
cos (45) *
cos(67 5)
cos (90) *
cos (112. 5)
cos (135) *
cos (157. 5)
cos (180) *
cos (202. 5)
cos (225) *
cos (247. 5)
cos (270) *
cos (292. 5)
cos (315) *
cos (337. 5)
cos (360) *
cos (112. 5)
cos (135) *
cos (157. 5)
cos (180) *
cos (202. 5)
cos (225) *
cos (247. 5)
cos (270) *
cos (292. 5)
cos (315) *
cos (337. 5)
cos (
cos (
cos (4
cos (
cos (9

360) *
22. 5)
5)*
67. 5)
0)*

1+2+4+16+32,

(22.
(45) *
(67. 5)
(90) *
sin(112. 5)
sin (135) *
sin(157. 5)
sin (180) *
sin (202. 5)
sin (225) *
sin (247. 5)
sin(270) *
sin (292. 5)
sin (315) *
sin(337. 5)
sin (360) *
sin(112. 5)

(

(

(

(

(

(

(

(

(

(3

(

(

(4

(

(9

sin
sin
sin
sin

5)

sin (135) *
sin(157. 5)
sin (180) *
sin (202. 5)
sin (225) *
sin (247. 5)
sin (270) *
sin (292. 5)
sin (315)*
sin (337. 5)
sin (360) *
sin(22. 5)
5)*
67. 5)
0)*

sin
sin
sin

I

GDL Reference Guide

85

3D Shapes

SWEEP

SWEEP n, m, alpha, scale, mask,
ul, v1l, sl1, ..., un, vn, sn,
xl, yl, z1, ..., xm, ym, zm

Surface generated by a polyline sweeping along a polyline space curve path.

The plane of the polyline follows the path curve. The space curve has to start from the x-y plane. If this condition is not met, it is moved
along the z axis to start on the x-y plane.

The cross-section at point (xi, yi, zi) is perpendicular to the space curve segment between points (xi-1, yi-1, zi-1) and (xi, yi, zi).
SWEEP can be used to model the spout of a teapot and other complex shapes.

n: number of polyline nodes.

m: number of path nodes.

alpha: incremental polyline rotation on its own plane, from one path node to the next one.

scale: incremental polyline scale factor, from one path node to the next one.

ui, wvi: coordinates of the base polyline nodes.

xi, yi, zi: coordinates of the path curve nodes.

mask: controls the existence of the bottom and top polygons’ surfaces and edges.
mask = Jj1 + 2*jp + 4*j3 + 16*js + 32*jg + 64*J7, where eachjcanbe O or 1.
j1: base surface is present,
jo2: top surface is present,
j3: side surface is present,
js: base edges are visible,
Je: top edges are visible,
j7: cross-section edges are visible, surface is articulated.

GDL Reference Guide 86

3D Shapes

=

L EERANE

H

si: status of the lateral edges.
0: lateral edges starting from the node are all visible,
1: lateral edges starting from the node are used for showing the contour.

Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.

See the section called “Additional Status Codes” for details.
Restriction of parameters:

n>1
m > 1
z1l < z2

GDL Reference Guide

87

3D Shapes

Example:

SWEEP 4, 12, 7.5, 1, 1+2+4+16+32,
-0.5, -0.25, 0, <7
0.5
0.5

-0.25, 0,
0.25, 0,
14 OI

|
(@)
(@)
N
ul

e N e~
o U
~ 0~

Ul
~

e 0N e~
o U
~ 0~

[olololololoNololoNoNoRaNO b)]
(@)
~

[clololololoNololoNoNoNe]
N N N N SN SN SN SN S SN~ o~
NN N N SN S SN S S SN S S~ N

NUTU D DWWNNREREPO
o0~ .

TUBE

TUBE n, m, mask,
ul, wl, sl1,

un, wn, sn,
x1l, yl, z1, anglel,

xm, ym, zm, anglem

Surface generated by a polyline sweeping along a space curve path without distortion of the generating cross-section. The internal connection

surfaces are rotatable in the U-W plane of the instantaneous U-V-W coordinate system.
V axis: approximates the tangent of the generator curve at the corresponding point.

W axis: perpendicular to the V axis and pointing upward with respect to the local z axis.

U axis: perpendicular to the V and W axes and forms with them a right-hand sided Cartesian coordinate system.

GDL Reference Guide

88

3D Shapes

If the V axis is vertical, then the W direction is not correctly defined. The W axis in the previous path node is used for determining a horizontal
direction.

The cross-section polygon of the tube measured at the middle of the path segments is always equal to the base polygon (ul, wl, ..., un, wn).
Section polygons in joints are situated in the bisector plane of the joint segments. The base polygon must be closed.

n: number of the polyline nodes.

m: number of the path nodes.

ui, wi: coordinates of the base polyline nodes.

xi, yi, zi: coordinates of the path curve nodes.

anglei: rotation angle of the cross-section.

mask: controls the existence of the bottom and top polygons’ surfaces and edges.
mask = Jj1 + 2*jp + 16*js + 32*jg + 64*j7 + 128*%]jg, where eachjcan be 0 or 1.
j1: base surface is present,
j2: end surface is present,
js: base edges (at x2, y2, z2) are visible,
Je: end edges (at xm-1, ym-1, zm-1) are visible,
j7: cross-section edges ate visible, surface is articulated,
jg: cross-section edges are sharp, the surface smoothing will stop here in OpenGL and rendering,

si: status of the lateral edges.

GDL Reference Guide 89

3D Shapes

0: lateral edges starting from the node are all visible,

1: lateral edges starting from the node are used for showing the contour.

2: when using ARCHICAD or Z-buffer Rendering Engine and setting Smooth Surfaces, the lateral edge belonging to this point defines a
break. This solution is equivalent to the definition of additional nodes. The calculation is performed by the compiler. With other rendering
methods, it has the same effect as using 0.

Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.

Note: The path comprises two points more than the number of generated sections. The first and the last points determine the position in
space of the first and the last surfaces belonging to the TUBE. These points only play a role in determining the normal of the surfaces, they
are not actual nodes of the path. The orientation of the surfaces is the same as that of the surfaces that would be generated at the nodes
nearest to the two endpoints, if the TUBE were continued in the directions indicated by these.

) el

GDL Reference Guide 90

Restriction of parameters:
n>2andm > 3

Example 1:

3D Shapes

TUBE 4, 18, 16+32,
2.0, 0.0, O,
0.0, 0.0, O,
0.0, 0.4, O,
2.0, 0.4, 0,
-1, 0, 0, O,
o, o0, 0, O,
4, 0, 0.1, O,
o, 0, 0.15, O,
6+4*sin(15), 4 - 4*cos(15), 0.2, O,
6+4*sin(30), 4 - 4*cos(30), 0.25, 0,
6+4*sin(45), 4 - 4*cos(45), 0.3, O,
6+4*sin(60), 4 - 4*cos(60), 0.35, O,
6+4*sin(75), 4 - 4*cos(75), 0.4, 0,
10, 4, 0.45, 0,
6+4*sin(105), 4 - 4*cos(105), 0.5, O,
6+4*sin (120), 4 - 4*cos(120), 0.55, O,
6+4*sin(135), 4 - 4*cos(135), 0.6, O,
6+4*sin(150), 4 - 4*cos(150), 0.65, O,
6+4*sin(165), 4 - 4*cos(1l65), 0.7, O,
o, 8, 0.75, O,
o, 8, 1, O,
-1, 8, 1, 0

GDL Reference Guide 91

3D Shapes

Example 2:

TUBE 14,

6,

o
o
(@)
~
oNoloNoNe]

1+2+16+32,
0,0,
3, 0,0,
.02, 0,
.02, O,
.0699, 0,
.07, 1,
.15, 901,
0, 801,

0.08, 90, 2000,
0.19, 0.15, O,

0.19, 0.19, O,
0.25, 0.19, 0,
0.25, 0.25, 0,
0, 0.25, 0,

o, 1, 0, O,

0, 0.0001, 0, O,
0, 0, 0,

0, 0, 0O,

0,
8,
.8, 0.0001, O,
8,

1, 0, 0O

GDL Reference Guide

92

3D Shapes

Example 3:
TUBE 3, 7,
0,
-0
0,
0.
0,
0,
3,
3,
3,
3,
TUBEA
TUBEA n, m,
ul,
an,
x1,
Xm,

N .
Wb dOOO~N OU1Oo

e N N N N N

=
P)
[@Ne)] +
OO W
~ S N

S O o o~
N N SN N~

00}

mask
wl,

wn,
vl,

ym,

0,
0,
-0.2,

0,

0,

0,

0,

0,
-0.2,
sl,
sn,
z1l,
zm

(@}
~

(@}

GDL Reference Guide

93

3D Shapes

TUBEA is a surface generated by a polyline sweeping along a space curve path with a different algorithm than that of the TUBE command.

The section polygon generated in each joint of the path curve is equal with the base polygon (ul, wl, ..., un, wn) and is situated in the bisector
plane of the projections of the joint segments to the local x-y plane. The base polygon can be opened: in this case the section polygons will
be generated to reach the local x-y plane as in the case of REVOLVE surfaces.

The cross section of the tube measured at the middle of the path segments can be different from the base polygon.
Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See the section called “Additional Status Codes” for details.

Example:

GDL Reference Guide 94

3D Shapes

TUBEA 9,

1 +2 + 16 + 32,
ll OI

S kg
~ S

N

N

O

<

N N 0O co o

N N N N N~ 0~

OO OODUTDRULWWOOOO |

2.25,
2.25,
, 15, 5

~

N
O
~
=
o~
~

COONS

COONS n, m,
x11,
x21,
x31,
x41,

mask,
vll,
y21,
y31,
v4l,

z11,
z21,
z31,
z41,

4
-7
4

-7

x1n,
x2n,
x3m,
x4m,

vln,
y2n,
y3m,
yém,

A Coons patch generated from four boundary curves.

mask:

mask = 4%93 + 8%94 + 16%9s + 32%94 +
j3: edges of the 1st boundary (x1, y1, z1) are visible,

Ja: edges of the 2nd boundary (x2, y2, z2) are visible,

js: edges of the 3rd boundary (x3, y3, z3) are visible,
Je: edges of the 4th boundary (x4, y4, z4) are visible,

j7: edges on surface are visible, surface is not smooth.

zln,
z2n,
z3m,
z4m

64* 77, where each j can be 0 or 1.

GDL Reference Guide

95

3D Shapes

Restriction of parameters:
n>1, m>1

GDL Reference Guide 96

3D Shapes

Example 1:

4+8+16+32+64,

6,

COONS 6,

©) © ©
Il I Il Il

G o £ g

< < < <

> > > >

Y Y Y Y

0] [0] 0]

o} o) T o}

o c o o

3 3 3 3

0 O T O TG GG s TG G
AT AN O RO ANMIIN AT NAO QO oM <0
o OO O, ; O Y - GG
noocoooo n555555 r012345t012345
—

C SN NN LN N N N C SN NN

— O ANMJTLO—T O NNMITINH-—"OOOOCOO—1LLLWLLW

97

GDL Reference Guide

3D Shapes

Example 2:

~ ~ e} Ne}
Il I I Il

<G = £ £

<

NN < N <

+ > > ~ > >

[QVIRS| ~ “ ~ [Te) Y 9

™M @© ~ (@] © Te} ~ . © © ~ NN

+ T o~ ~ © S N — ~T N ~ o~ o [fo] O

NelN¥ai . O O o o~ N 1l NS [T} N ~g N N

— 3 o N~ 0 SO e 3 ~ . NS O |

+ O ~ WO <~ +« ~O 0 | — o~ O ~O—A—=H—A Il OO I I 1 1

W QOO N~ OO e} ~ 1 1 < QO 1 Q ~

+ — O 1~ < ~ 1O N ~ 8~ 8~ 8~ NO

< P~ ~ N T O ~ o~ T ~ v v v O N OO0 A
NAN ~ ~s0D &~ vl 8+ ~HO | N~ HN<OWoAPL &I | &1 1 11
~ ON « N N [Te) [To) ™ <

Ne} N o RS NS NS
- — O |l OO A —TLVUOVIILNWOVWO—"ANNILHWO-—"ANM LN O
~

~

[9p]

Z

o

(@]

O

98

GDL Reference Guide

3D Shapes

MASS

MASS top material, bottom material, side material,
n, m, mask, h,
x1l, yl, z1, sl1,

Xn, yn, zn, sn,
xn+l, yn+l, zn+l, sn+l,

>.<I.1-;—m, yn+m, zn+m, sn+m
The equivalent of the shape generated by the Mesh tool in ARCHICAD.

top_material, bottom material, side material: name/index of the top, bottom and side materials.

n: the number of nodes in the mass polygon.
m: the number of nodes on the ridges.

h: the height of the skirt (can be negative).
xi, yi, zi: the coordinates of the nodes.

mask:

mask = Jj1 + 4*j3 + 16*js5 + 32*Jg + 64*J5 + 128%*7g, where eachj can be 0 or 1.

j1: base surface is present,

j3: side surfaces are present,

js5: base and side edges are visible,

je: triangulation edges are visible,

j7: triangulation edges are visible, top surface is not smooth,
jg: all ridges will be sharp, but the surface is smooth.

GDL Reference Guide

99

3D Shapes

si: similar to the PRISM_ command. Additional status codes allow you to create segments and arcs in the planar polyline using special
constraints.

See the section called “Additional Status Codes” for details.
Restriction of parameters:
n>3, m>20

GDL Reference Guide 100

3D Shapes

Example:

MASS "Surf-White", "Surf-White", "Surf-White",
15, 12, 117, -5.0,
0o, 12, 0, 15,
0,

8, 12, 15,
8, 0, 0, 15,
13, 0, 0, 13,
16, 0, 0, 13,
19, 0, 0, 13,
23, 0, 0, 13,
24, 0, 0, 15,
24, 12, 0, 15,
28, 12, 0, 15,
28, 20, 8, 13,
28, 22, 8, 15,
0, 22, 8, 15,
0, 20, 8, 13,
0, 12, 0, -1,
0, 22, 8, O,
28, 22, 8, -1,
23, 17, 5, 0,
23, 0, 5, -1,

GDL Reference Guide 101

3D Shapes

MASS{2}

MASS{2} top material, bottom material, side material,
n, m, mask, h,
x1l, yl, z1, sl1,

Xn, yn, zn, sn,
xn+l, yn+l, zn+l, sn+l,

xn+m, yn+m, zn+m, sn+m
Extension of the MASS command with an additional mask bit and the possibility of hiding all top edges of the mass.

mask:
mask = Jj1 + 4*j3 + 16*js5 + 32*jJg + 64*j7 + 128*%jg + 256*jg9 + 512*j10, where eachjcanbe O or 1.
j1: base surface is present,
j3: side surfaces are present,
js: base and side edges are visible,
Je: top edges are visible,
j7: top edges are visible, top surface is not smooth,
jg: all ridges will be sharp, but the surface is smooth.
Jo: edges participate in line elimination.
J10: all top edges will be hidden.

GDL Reference Guide 102

3D Shapes

Example:

PEN 1
mat = IND (MATERIAL, "Mtl-Aluminium")
FOR i1=1 TO 2 STEP 1

MASS{2} mat, mat, mat,

5, 0, 1+4+16+32+64+256, -1,
o, 0, o0, 15,
2, 0, 0, 15,
2, 2, 0, 15,
0o, 2, 0, 15,
o, o0, o0, -1
BODY -1
ADDX 2
NEXT 1
POLYROOF

POLYROOF defaultMat, k, m, n,
offset, thickness, applyContourInsidePivot,
z 1l, ..., z k,
pivotx 1, pivotY 1, pivotMask 1,
roofAngle 11, gableOverhang 11, topMat 11, bottomMat 11,

roofAngle 1k, gableOverhang 1k, topMat 1k, bottomMat 1k,

pivotX m, pivotY m, pivotMask m,
roofAngle ml, gableOverhang ml, topMat ml, bottomMat ml,

roofAngle mk, gableOverhang mk, topMat mk, bottomMat mk,
contourX 1, contourY 1, contourMask 1, edgeTrim 1, edgeAngle 1, edgeMat 1,

contourX n, contourY n, contourMask n, edgeTrim n, edgeAngle n, edgeMat n
The command creates a possibly multi-level roof in which the geometry is controlled by multiple parameters, most importantly the roof angles
and two polygons: a pivot polygon and a contour polygon. At the pivot polygon, the roof is slanted at the roof angle. It ascends until it either

GDL Reference Guide 103

3D Shapes

reaches the height of the next level or until it is eliminated by its sides encountering one another. It also descends downwards, until it reaches
the contour polygon, which cuts off parts of the roof outside of it. The contour polygon can also be used to cut holes in the roof.

defaultMat: the numeric index of the "inner" material of the roof. This material becomes visible at gables and at cut surfaces, e.g,, if
the roof is cut by a plane.

k: the number of levels.

m: the number of pivot polygon vertices.

n: the number of contour polygon vertices.
offset: an offset for the thickness of the roof.
thickness: the thickness of the roof.

applyContourInsidePivot: if set to 0, the outer contour polygon is only applied below the pivot polygon plane. If set to 1, the
outer contour polygon is applied both above and below the pivot polygon plane. The 0 setting may be used to prevent the contour polygon
from cutting off gables that lean outwards.

z_i: the Z coordinate of a level.

pivotX i, pivotY_ i: coordinates of the pivot polygon vertices.

pivotMask i:
0: marks a normal vertex,

—-1: marks the end of the current pivot subpolygon (outer contour or hole). Data for such a vertex must be a copy of the data for the first
vertex of the subpolygon. A polygon must always be closed with a mask value of -1, even if there are no holes inside it.

roofAngle i: angle of slant for a pivot edge on a given level. If the angle >= 90, that part of the roof becomes a gable.

gableOverhang_i: at the sides of a gable, the roof can extend over a lower level of itself. The amount of this can be controlled by this
parameter, which has effect only on gables (roofAngle >= 90) that are at least on the second level of the roof.

topMat i, bottomMat i: the numericindex of the materials for the top and bottom of the roof.

contourX i, contourY i: coordinates of the contour polygon vertices.

contourMask i:
0: marks a normal vertex,

-1: marks the end of the current contour subpolygon (outer contour or hole). Data for such a vertex must be a copy of the data for the
first vertex of the subpolygon. A polygon must always be closed with a mask value of -1, even if there are no holes inside it.

edgeTrim i: specifies the way the edge is trimmed by the contour polygon. Possible values are:
0: Vertical,

GDL Reference Guide 104

3D Shapes

1: Perpendicular to roof plane,
2: Hotrizontal,
3: Custom angle to roof plane.

edgeAngle_ i: the custom angle of the edge to the roof plane. It has effect only if edgeTrim is set to 3 (custom angle to roof plane).

edgeMat_i: numeric index of the material at the edge the roof, where the contour cuts it

sideMat,

Figure 1: Materials

GDL Reference Guide 105

3D Shapes

roofAngle,,

roofAngle,,

edgeAngle,

T

Figure 2: Angles

GDL Reference Guide 106

3D Shapes

Example:

POLYROOF "Paint-01",
2, 5, 5,
0, 0.2, 0O,
! Start of z values
2.7,
3.2,
! Start of pivot polygon
2, 8, 0,
45, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
90, 0.5, ind(material, "Paint-01"), ind(material, "Paint-01"),
2, 3, 0,
45, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
65, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
10, 3, 0,
45, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
65, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
10, 8, 0,
45, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
65, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
2, 8, -1,
45, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
90, 0.5, ind(material, "Paint-01"), ind(material, "Paint-01"),
! Start of contour polygon
1.5, 8.5, 0, 0, 0, ind(material, "Paint-01"),
1.5, 2.5, 0, 0, 0, ind(material, "Paint-01"),
10.5, 2.5, 0, 0, 0, ind(material, "Paint-01"),
10.5, 8.5, 0, 0, 0, ind(material, "Paint-01"),
1.5, 8.5, -1, 0, 0, ind(material, "Paint-01")

Output: see Figure 1

GDL Reference Guide 107

3D Shapes

POLYROOF{2}

POLYROOF{2} defaultMat, k, m, n,
offset, thickness, totalThickness, applyContourInsidePivot,
z 1, ..., z k,
pivotx 1, pivotY 1, pivotMask 1,
roofAngle 11, gableOverhang 11, topMat 11, bottomMat 11,

roofAngle 1k, gableOverhang 1k, topMat 1k, bottomMat 1k,

pivotX m, pivotY m, pivotMask m,
roofAngle ml, gableOverhang ml, topMat ml, bottomMat ml,

roofAngle mk, gableOverhang mk, topMat mk, bottomMat mk,
contourX 1, contourY 1, contourMask 1, edgeTrim 1, edgeAngle 1, edgeMat 1,

contourX n, contourY n, contourMask n, edgeTrim n, edgeAngle n, edgeMat n
POLYROOF{2} is an extension of the POLYROOF command with the possibility of defining the total thickness of the roof. This parametet
should be considered together with offset and thickness, when the generation of a slice of the roof is desirable. In this case the thickness and
the offset should be set to the thickness of the slice and to the distance between the top planes of the slice and the complete roof respectively.

totalThickness: the total thickness of the roof.

POLYROOF{3}

POLYROOF{3} defaultMat, mask, k, m, n,
offset, thickness, totalThickness, applyContourInsidePivot,
z 1, ..., z k,
pivotX 1, pivotY 1, pivotMask 1,
roofAngle 11, gableOverhang 11, topMat 11, bottomMat 11,

roofAngle 1k, gableOverhang 1k, topMat 1k, bottomMat 1k,

pivotX m, pivotY m, pivotMask m,
roofAngle ml, gableOverhang ml, topMat ml, bottomMat ml,

roofAngle mk, gableOverhang mk, topMat mk, bottomMat mk,
contourX 1, contourY 1, contourMask 1, edgeTrim 1, edgeAngle 1, edgeMat 1,

contourX n, contourY n, contourMask n, edgeTrim n, edgeAngle n, edgeMat n

GDL Reference Guide 108

3D Shapes

POLYROOF{3} is an extension of the POLYROOF{2} command with the possibility of controlling the global behavior of the generated roof.

mask: controls the global behavior of the generated roof.
mask = j; + 2*J, where eachjcanbe 0 or 1.
j1: edges participate in line elimination.
j2: Make all edges invisible.

GDL Reference Guide 109

3D Shapes

Example:

pen 1
mat IND (MATERIAL, "Mtl-Aluminium")
a = -0.4242640691048 : b = 4.424264068326
c = 6.424264068326
POLYROOF{3} mat,1, 2, 5, 5,
o, 0.3, 0.3, 1, 0, 1,

a, b, 0, 45, 0, mat, mat, 90, 0, mat, mat,
a, a, 0, 45, 0, mat, mat, 90, 0, mat, mat,
c, a, 0, 45, 0, mat, mat, 90, 0, mat, mat,
c, b, 0, 45, 0, mat, mat, 90, 0, mat, mat,
a, b, -1,45, 0, mat, mat, 90, 0, mat, mat,
-0.8, -0.8, 0, 2, 0, mat,

6.8, 4.8, 0, 2, 0, mat,
-0.8, 4.8, 0, 2, 0, mat,
-0.8, -0.8, -1, 2, O, mat

a = 0.1514718617904 : b = 3.848528136652
c = 5.848528136652 : g 0.5757359305057
w = 5.424264067936 : e = 3.424264056692
POLYROOF{3} mat,1, 1, 5, 5,

0, 0.3, 0.3, 1, 0.5757359312847,

a, b, 0, 45, 0, mat, mat,
a, a, 0, 45, 0, mat, mat,
c, a, 0, 45, 0, mat, mat,
c, b, 0, 45, 0, mat, mat,
a, b, -1, 45, 0, mat, mat,
d, d 0, 0, 0, mat,

w, d, 0, 0, 0, mat,

w, €, 0, 0, 0, mat,

a, €, 0, 0, 0, mat,

dr ds _ll Ol Ol mat

GDL Reference Guide 110

3D Shapes

POLYROOF{4}

POLYROOF{4} defaultMat, mask, k, m, n,
offset, thickness, totalThickness, applyContourInsidePivot,
z 1, ..., z k,
pivotx 1, pivotY 1, pivotMask 1,
roofAngle 11, gableOverhang 11, topMat 11, bottomMat 11,

roofAngle 1k, gableOverhang 1k, topMat 1k, bottomMat 1k,

pivotX m, pivotY m, pivotMask m,
roofAngle ml, gableOverhang ml, topMat ml, bottomMat ml,

roofAngle mk, gableOverhang mk, topMat mk, bottomMat mk,
contourX 1, contourY 1, contourMask 1, edgeTrim 1, edgeAngle 1, edgeMat 1,

contourX n, contourY n, contourMask n, edgeTrim n, edgeAngle n, edgeMat n
POLYROOF {4} is an extension of the POLYROOF {3} command with the possibility of using inline matetial definition, that means matetials
defined in GDL script locally also can be used next to materials defined in global material definitions.

EXTRUDEDSHELL

EXTRUDEDSHELL topMat, bottomMat, sideMat 1, sideMat 2, sideMat 3, sideMat 4,
defaultMat,
n, offset, thickness, flipped, trimmingBody,
x tb, y tb, x te, y te, topz, tangle,
x bb, y bb, x be, y be, bottomz, bangle,
preThickenTran 11, preThickenTran 12, preThickenTran 13, preThickenTran 14,
preThickenTran 21, preThickenTran 22, preThickenTran 23, preThickenTran 24,
preThicakenTran 31, preThickenTran 32, preThickenTran 33, preThickenTran 34,
x1l, yv1, s 1,

Xxn, yn sn
Surface created by first extruding a polyline, then adding thickness to it.
topMat, bottomMat, sideMat 1, sideMat 2, sideMat 3, sideMat 4: Materials on the top, bottom and four sides
of the object.

defaultMat: the numeric index of the "inner" material of the object. This material becomes visible at cut sutfaces, e.g;, if the object
is cut by a plane.

GDL Reference Guide 111

3D Shapes

n: number of profile base polyline vertices.

offset: an offset for the thickness of the shell. Cannot be negative.

thickness: the thickness of the shell.

flipped:
1: if the shell should be flipped,
0: otherwise

trimmingBody:
1: if the shell is to be closed for trimming purposes,
0: otherwise

Xx_tb, y tb, x te, y te, topz, tangle: Specify the top plane of the extrusion. The meaning of the parameters is the same
as for the SPRISM_ {2} command.

x bb, y bb, x be, y be, bottomz, bangle: Specify the bottom plane of the extrusion. The meaning of the parameters
is the same as for the SPRISM_ {2} command.

preThickenTran_i: a transformation executed before thickening. See the XFORM command for the meaning of parameters.

x i, y i, s_i: XandY coordinates and status values for the base profile polyline. See the EXTRUDE command for details. The
visibility of the sides cannot be controlled with the status.

EXTRUDEDSHELL{2}

EXTRUDEDSHELL{2} topMat, bottomMat, sideMat 1, sideMat 2, sideMat 3, sideMat 4,
defaultMat,
n, status, offset, thickness, flipped, trimmingBody,
x tb, y tb, x te, y te, topz, tangle,
x bb, y bb, x be, y be, bottomz, bangle,
preThickenTran 11, preThickenTran 12, preThickenTran 13, preThickenTran 14,
preThickenTran 21, preThickenTran 22, preThickenTran 23, preThickenTran 24,
preThicakenTran 31, preThickenTran 32, preThickenTran 33, preThickenTran 34,
x1l, yv1, s 1,

Xxn, yn, sn
EXTRUDEDSHELL{2} is an extension of the EXTRUDEDSHELL command with the possibility of hiding edges between original and

thickened surface.

status: Status bits:

GDL Reference Guide 112

3D Shapes

status = Jji, where eachjcanbeOor1
j1: Make edges invisible between original and thickened surface.

Example:

EXTRUDEDSHELL "Paint-02", "Surf-Stucco Yellow",
"Surf-Stucco Yellow", "Surf-Stucco Yellow", "Surf-Stucco Yellow",
"Surf-Stucco Yellow", "Surf-Stucco Yellow",

3, 0.00, 0.30, 0, O,

! 2 slant planes

0.00, 0.00, 0.00, 1.00, 0.00, 0.00,
0.00, 0.00, 0.00, 1.00, -10.00, 0.00,
! transformation matrix

0.00, 0.00, 1.00, 0.00,

1.00, 0.00, 0.00, 0.00,

0.00, 1.00, 0.00, 0.00,

! profile polyline

2.00, 0.00, 15,

0.00, 2.00, 15,

-2.00, 0.00, 15

GDL Reference Guide 113

3D Shapes

EXTRUDEDSHELL{3}

EXTRUDEDSHELL{3} topMat, bottomMat, sideMat 1, sideMat 2, sideMat 3, sideMat 4,
defaultMat,
n, status, offset, thickness, flipped, trimmingBody,
x tb, y tb, x te, y te, topz, tangle,
x bb, y bb, x be, y be, bottomz, bangle,
preThickenTran 11, preThickenTran 12, preThickenTran 13, preThickenTran 14,
preThickenTran 21, preThickenTran 22, preThickenTran 23, preThickenTran 24,
preThicakenTran 31, preThickenTran 32, preThickenTran 33, preThickenTran 34,
x1l, yv1, s 1,

X n, yn, s n

EXTRUDEDSHELL{3} is an extension of the EXTRUDEDSHELL{2} command with the possibility of using inline material definition, that

means materials defined in GDL script locally also can be used next to materials defined in global material definitions.

REVOLVEDSHELL

REVOLVEDSHELL topMat, bottomMat, sideMat 1, sideMat 2, sideMat 3, sideMat 4,
defaultMat,
n, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,
preThickenTran 11, preThickenTran 12, preThickenTran 13, preThickenTran 14,
preThickenTran 21, preThickenTran 22, preThickenTran 23, preThickenTran 24,
preThickenTran 31, preThickenTran 32, preThickenTran 33, preThickenTran 34,
x1l, yv1, s 1,

Xxn, yn sn
Surface created by rotating a polyline defined in the x-y plane around the x axis, then adding thickness to it.

topMat, bottomMat, sideMat 1, sideMat 2, sideMat 3, sideMat 4: Materials on the top, bottom and four sides

of the object.

defaultMat: the numeric index of the "inner" material of the object. This material becomes visible at cut sutfaces, e.g;, if the object

is cut by a plane.
n: number of profile base polyline vertices.
offset: an offset for the thickness of the shell. Cannot be negative.
thickness: the thickness of the shell.

flipped:

GDL Reference Guide

114

3D Shapes

1: if the shell should be flipped,
0: otherwise.
trimmingBody:
1: if the shell is to be closed for trimming purposes,
0: otherwise.

alphaOffset: the sweep start angle.
alpha: the sweep angle length in degrees, may be negative.
preThickenTran_i: a transformation executed before thickening. See the XFORM command for the meaning of parameters.

x i, y i, s_i: XandY coordinates and status values for the base profile polyline. See the EXTRUDE command for details. The
visibility of the sides cannot be controlled with the status.

REVOLVEDSHELL{2}

REVOLVEDSHELL{2} topMat, bottomMat, sideMat 1, sideMat 2, sideMat 3, sideMat 4,
defaultMat,
n, status, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,
preThickenTran 11, preThickenTran 12, preThickenTran 13, preThickenTran 14,
preThickenTran 21, preThickenTran 22, preThickenTran 23, preThickenTran 24,
preThickenTran 31, preThickenTran 32, preThickenTran 33, preThickenTran 34,
x1l, yv1, s 1,

Xxn, yn sn
REVOLVEDSHELL{2} is an extension of the REVOLVEDSHELL command with the possibility of hiding edges of sutfaces, and edges
between original and thickened surface.

status: Status bits:
status = j; + 2*j,, where eachjcan be 0 or 1.
j1: Make edges invisible between original and thickened surface.
j2: Make edges invisible on surfaces.

GDL Reference Guide 115

3D Shapes

Example:

REVOLVEDSHELL "Paint-02", "Surf-Stucco Yellow",

"Surf-Stucco Yellow", "Surf-Stucco Yellow", "Surf-Stucco Yellow",

"Surf-Stucco Yellow", "Surf-Stucco Yellow",

2, 0.00, 0.30, o, 0, 0.00, 270.00,

! transformation matrix

0.00, 0.00, -1.00, 0.00,

0.00, 1.00, 0.00, 0.00,

1.00, 0.00, 0.00, 0.00,
! profile polyline
4.00, 0.00, 2,
0.00, 4.00, 2

GDL Reference Guide 116

3D Shapes

REVOLVEDSHELL{3}

REVOLVEDSHELL{3} topMat, bottomMat, sideMat 1, sideMat 2, sideMat 3, sideMat 4,
defaultMat,
n, status, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,
preThickenTran 11, preThickenTran 12, preThickenTran 13, preThickenTran 14,
preThickenTran 21, preThickenTran 22, preThickenTran 23, preThickenTran 24,
preThickenTran 31, preThickenTran 32, preThickenTran 33, preThickenTran 34,
x1l, yv1, s 1,

Xxn, yn, sn
REVOLVEDSHELL{3} is an extension of the REVOLVEDSHELL{2} command with the possibility of using inline matetial definition, that
means materials defined in GDL script locally also can be used next to materials defined in global material definitions.

REVOLVEDSHELLANGULAR

REVOLVEDSHELLANGULAR topMat, bottomMat,
sideMat 1, sideMat 2, sideMat 3, sideMat 4, defaultMat,
n, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,
segmentationType, nOfSegments,
preThickenTran 11, preThickenTran 12, preThickenTran 13,
preThickenTran 14, N N
preThickenTran:ZI, preThickenTran 22, preThickenTran 23,
preThickenTran 24,
preThickenTran 31, preThickenTran 32, preThickenTran 33,
preThickenTran 34, N N
x1l, y1, s 1,

X n, yn, sn
An angular variant of the REVOLVEDSHELL command. Parameters are the same with the addition of the following extra parameters:

segmentationType: Must be cither 1 or 2.
1: means that 360 degrees of revolution is split into nOfSegments segments,
2: means that the actual revolution angle (given by the alpha parameter) is split into nOfSegments segments.

nOfSegments: Number of segments, see segmentationType parameter above.

GDL Reference Guide 117

3D Shapes

REVOLVEDSHELLANGULAR{2}

REVOLVEDSHELLANGULAR{2} topMat, bottomMat,
sideMat 1, sideMat 2, sideMat 3, sideMat 4, defaultMat,
n, status, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,

segmentationType,
preThickenTran 11,
preThickenTran 14,
preThickenTran 21,
preThickenTran 24,
preThickenTran 31,
preThickenTran 34,
x1l, yv1, s 1,

X n, yn, sn

nOfSegments,

preThickenTran 12, preThickenTran 13,
preThickenTran 22, preThickenTran 23,

preThickenTran 32, preThickenTran 33,

REVOLVEDSHELLANGULAR{2} is an extension of the REVOLVEDSHELLANGULAR command with the possibility of hiding edges
of surfaces, and edges between original and thickened surface.

status: Status bits:

status = j; + 2*J, where eachjcanbe 0 or 1.

j1: Make edges invisible between original and thickened surface.

j2: Make edges invisible on surfaces.

REVOLVEDSHELLANGULAR{3}

REVOLVEDSHELLANGULAR{3} topMat, bottomMat,
sideMat 1, sideMat 2, sideMat 3, sideMat 4, defaultMat,

n, status, offset,
segmentationType,
preThickenTran 11,
preThickenTran 14,
preThickenTran 21,
preThickenTran 24,
preThickenTran 31,
preThickenTran 34,
x1l, vy 1, s 1,

X n, yn, s n

thickness, flipped, trimmingBody, alphaOffset,
nOfSegments,

preThickenTran 12, preThickenTran 13,
preThickenTran 22, preThickenTran 23,

preThickenTran 32, preThickenTran 33,

alpha,

GDL Reference Guide

118

3D Shapes

REVOLVEDSHELLANGULAR{3} is an extension of the REVOLVEDSHELLANGULAR {2} command with the possibility of using inline
material definition, that means materials defined in GDL script locally also can be used next to materials defined in global material definitions.

RULEDSHELL

RULEDSHELL topMat, bottomMat,
sideMat 1, sideMat 2, sideMat 3, sideMat 4, defaultMat,
n, m, g,
offset, thickness, flipped, trimmingBody,
preThickenTran 11, preThickenTran 12, preThickenTran 13, preThickenTran 14,
preThickenTran 21, preThickenTran 22, preThickenTran 23, preThickenTran 24,
preThickenTran 31, preThickenTran 32, preThickenTran 33, preThickenTran 34,
firstpolyX 1, firstpolyY 1, firstpolyS 1,

firstpolyX n, firstpolyY n, firstpolyS n,
secondpolyX 1, secondpolyY 1, secondpolyS 1,

secondpolyX m, secondpolyY m, secondpolyS m,

profile2Tran 11, profile2Tran 12, profile2Tran 13, profile2Tran 14
profile2Tran 21, profile2Tran 22, profile2Tran 23, profile2Tran 24
profile2Tran 31, profile2Tran 32, profile2Tran 33, profile2Tran 34
generatrixFirstIndex 1, generatrixSecondIndex 1,

generatrixFirstIndex g, generatrixSecondIndex g
Surface created by connecting two polylines.

topMat, bottomMat, sideMat 1, sideMat 2, sideMat 3, sideMat 4: Materials on the top, bottom and four sides
of the object.

defaultMat: the numeric index of the "inner" material of the object. This material becomes visible at cut sutfaces, e.g;, if the object
is cut by a plane.

n: number of vertices for first profile base polyline.

m: number of vertices for second profile base polyline.

g: number of generatrices.

offset: an offset for the thickness of the shell. Cannot be negative.
thickness: thickness of the shell.

flipped:

GDL Reference Guide 119

3D Shapes

1: if the shell should be flipped,
0: otherwise
preThickenTran: a transformation executed before thickening, See the XFORM command for the meaning of parameters.
trimmingBody:
1: if the shell is to be closed for trimming purposes,
0: otherwise
firstpolyX, firstpolyY, firstpolyS: X and Y coordinates and status values for the first base profile polyline. See the
REVOLVE command for details.
secondpolyX, secondpolyY, secondpolyS: X andY coordinates and status values for the second base profile polyline. See
the REVOLVE command for details.
profile2Tran: a transformation executed on the second profile. Use this transformation to position the second profile relative to the
first one. See the XFORM command for the meaning of parameters.

generatrixFirstIndex, generatrixSecondIndex: pairs of indexes, one from the first polyline and one from the second
polyline. The vertexes with the given indexes will be connected with a line.

GDL Reference Guide 120

3D Shapes

RULEDSHELL{2}

RULEDSHELL{2} topMat, bottomMat,

sideMat 1, sideMat 2, sideMat 3, sideMat 4, defaultMat,

n, m, g, status, B B

offset, thickness, flipped, trimmingBody,

preThickenTran 11, preThickenTran 12, preThickenTran 13, preThickenTran 14,
preThickenTran 21, preThickenTran 22, preThickenTran 23, preThickenTran 24,
preThickenTran 31, preThickenTran 32, preThickenTran 33, preThickenTran 34,
firstpolyX 1, firstpolyY 1, firstpolyS 1,

firstpolyX n, firstpolyY n, firstpolyS n,
secondpolyX 1, secondpolyY 1, secondpolysS 1,

secondpolyX m, secondpolyY m, secondpolyS m,

profile2Tran 11, profile2Tran 12, profile2Tran 13, profile2Tran 14
profile2Tran 21, profile2Tran 22, profile2Tran 23, profile2Tran 24
profile2Tran 31, profile2Tran 32, profile2Tran 33, profile2Tran 34
generatrixFirstIndex 1, generatrixSecondIndex 1,

generatrixFirstIndex g, generatrixSecondIndex g

RULEDSHELL{2} is an extension of the RULEDSHELL command with the possibility of hiding edges of sutfaces, and edges between
original and thickened surface.

status: Status bits:
status = j; + 2*J, where eachjcanbe0or 1.
j1: Make edges invisible between original and thickened surface.
j2: Make edges invisible on surfaces.

GDL Reference Guide 121

3D Shapes

Example:

GDL Reference Guide 122

3D Shapes

RULEDSHELL "Paint-14",

"Paint-14",

"Paint-14",

"Paint-14", "Paint-14",

4, 3, 3,

0.00, 0.30, 0, O,

! transformation matrix

1.00, 0.00, 0.00, 0.00,
0.00, 0.00, -1.00, 0.00,
0.00, 1.00, 0.00, 0.00,
! profile 1 polyline

0.00, 0.00, 2,

2.00, 2.00, 2,

4.00, 0.00, 2,

6.00, 0.00, 2,

! profile 2 polyline

0.00, 0.00, ,

2.00, 2.00, 2,

6.00, 1.00, 2,

! transformation matrix

1.00, 0.00, 0.00, 0.00,
0.00, 1.00, 0.00, 0.00,
0.00, 0.00, 1.00, -10.00,
! generatrices

1, 1,

2, 2,

4, 3

"Paint-14",

"Paint-14",

GDL Reference Guide

123

3D Shapes

RULEDSHELLJ{3}

RULEDSHELL{3} topMat, bottomMat,

sideMat 1, sideMat 2, sideMat 3, sideMat 4, defaultMat,

n, m, g, status, B B

offset, thickness, flipped, trimmingBody,

preThickenTran 11, preThickenTran 12, preThickenTran 13, preThickenTran 14,
preThickenTran 21, preThickenTran 22, preThickenTran 23, preThickenTran 24,
preThickenTran 31, preThickenTran 32, preThickenTran 33, preThickenTran 34,
firstpolyX 1, firstpolyY 1, firstpolyS 1,

firstpolyX n, firstpolyY n, firstpolyS n,
secondpolyX 1, secondpolyY 1, secondpolysS 1,

secondpolyX m, secondpolyY m, secondpolyS m,

profile2Tran 11, profile2Tran 12, profile2Tran 13, profile2Tran 14
profile2Tran 21, profile2Tran 22, profile2Tran 23, profile2Tran 24
profile2Tran 31, profile2Tran 32, profile2Tran 33, profile2Tran 34
generatrixFirstIndex 1, generatrixSecondIndex 1,

generatrixFirstIndex g, generatrixSecondIndex g
RULEDSHELL{3} is an extension of the RULEDSHELL{2} command with the possibility of using inline material definition, that means
materials defined in GDL script locally also can be used next to materials defined in global material definitions.

ELEMENTS FOR VISUALIZATION
LIGHT

LIGHT red, green, blue, shadow,

radius, alpha, beta, angle falloff,

distancel, distance2,

distance falloff [[,] ADDITIONAL DATA namel = valuel,

name?2 = value2, ...]
A light source radiates [red, green, blue] colored light from the local origin along the local x axis. The light is projected parallel to the x axis
from a point or circle source. It has its maximum intensity within the alpha-angle frustum of a cone and falls to zero at the beta-angle frustum
of a cone. This falloff is controlled by the angle_falloff parameter. (Zero gives the light a sharp edge, higher values mean that the transition
is smoother.) The effect of the light is limited along the axis by the distancel and distance2 clipping values. The distance_falloff parameter
controls the decrease in intensity depending on the distance. (Zero value means a constant intensity; bigger values are used for stronger falloff.)

GDL Reference Guide 124

3D Shapes

GDL transformations affect only the starting point and the direction of the light.

shadow: controls the light’s shadow casting.
0: light casts no shadows,
1: light casts shadows.

snipel

intensity

dist1

dist2

Restriction of parameters:
alpha <= beta <= 80°
The following parameter combinations have special meanings:

radius = 0, alpha = 0, beta = 0: A point light, it radiates light in every direction and does not cast any shadows. The shadow
and angle_falloff parameters are ignored, the values shadow = 0, angle_falloff = 0 are supposed.

radius > 0, alpha = 0, beta = 0: A directional light with parallel beams.

GDL Reference Guide 125

3D Shapes

r = 0, alpha > 0, beta > 0: A directional light with conic beams.

r > 0, alpha = 0, beta > 0: A directional light with parallel beam and conic falloff.

Light definitions can contain optional additional data definitions after the ADDITIONAL_DATA keyword. Additional data has a name (namei)

and a value (valuei), which can be an expression of any type, even an array. If a string parameter name ends with the substring "_file", its value
is considered to be a file name and will be included in the archive project.

GDL Reference Guide 126

3D Shapes

Different meanings of additional data can be defined and used by the executing application.

Example 1:
LIGHT 1.0,0.2,0.3, ! RGB
1, ! shadow on
1.0, ! radius
45.0, 60.0, ! anglel, angle2
0.3, ! angle falloff
1.0, 10.0, ! distancel, distance?2
0.2 ! distance falloff
Example 2:

The library part dialog box for lights in ARCHICAD:

GDL Reference Guide 127

3D Shapes

B Pendant Lamp 19 [Read-only]
New Delete l_ a b
Display Variable Mame Value
3 A Width 500 A
E 4 AZ Width 280
3 B Width 500
H gs_light_switch 1
¥ tempintC 1
LEET B g5_calor_red Red 1.0000
: a5_eolor_green Green 05524
Migration B gs_color_blus Blus 0.7059
Components H gs_light_intensity Intensity 100
Descriptors B zzyzme Height 1000
SSRE B PendantLam_sp0 Style
Master il E] = str3hadeType Abe Shade Style Type 7
20 H |+ x> iShadeType] 7
30 M = stiCustomShade b Customn Shade Mame
Froperties D H = striountType Abe Maount Type Type 1
Parameter Bl | = b= iMountType 5 1
Interface D s = strSuspenderType Abe Suspender Type Cable
Forwsrd Migration i X5 iSuspenderType o 1
Badward Migration = of PendantLam_sp1 Dimensions
H = diametert Bottom Diameter o0
20 Symeal Bl. = width Widh a0
A= Bl = bottommidth o3 Bottom Width 400
20 View B [+ X> D12 &3 Bottom Dimension 250
2D View =os = diameter2 [Top Diameter 400
5 = topuidth 53 Top Width 200
B = D22 =] Top Dimension 200
S diameter w3 Diameter 500
XS D2 o Diameter 250
ER— shadeheight = Shade Height 250 v

Part of the corresponding GDL script:

if gs light switch > 0 then
LIGHT gs_light intensity/100*gs_color red, \
gs_light intensity/100*gs _color green, \
gs_light intensity/100*gs color blue, ! RGB

endif

GDL Reference Guide

128

3D Shapes

PICTURE
PICTURE expression, a, b, mask

A picture element for photorendering,

O

| 0 N X

A string type expression means a file name, a numeric expression or the index of a picture stored in the library part. A 0 index is a special
value that refers to the preview picture of the library part. Other pictures can only be stored in library parts when saving the project or selected
elements containing pictures as GDL Objects.

Indexed picture reference cannot be used in the MASTER_GDL script when attributes are merged into the current attribute set. The image
is fitted on a rectangle treated as a RECT in any other 3D projection method.

mask: alpha + distortion

alpha: alpha channel control.
0: do not use alpha channel; picture is a rectangle,
1: use alpha channel; parts of the picture may be transparent.
distortion: distortion control.
0: fit the picture into the given rectangle,
2: fit the picture in the middle of the rectangle using the natural aspect ratio of the picture,
4 : fill the rectangle with the picture in a central position using natural aspect ratio of the picture.

GDL Reference Guide 129

3D Shapes

distortion=0 distortion=2 distortion=4
Y Y
z z
J)
9 " , <
o V4 X a ¥ X

3D TExT ELEMENTS
TEXT

TEXT d, 0, expression

A 3D representation of the value of a string or numeric type expression in the current style.
See the [SET] STYLE command and the DEFINE STYLE command.

d: thickness of the characters in meters.

In the current version of GDL, the second parameter is always zero.

Note: For compatibility with the 2D GDL script, character heights are always interpreted in millimeters in DEFINE STYLE statements.

Example 1:

DEFINE STYLE "aa" "New York", 3, 7, O
SET STYLE "aa"
TEXT 0.005, 0, "3D Text"

GDL Reference Guide 130

3D Shapes

Example 2:

name = "Grand"

ROTX 90

ROTY -30

TEXT 0.003, 0, name
ADDX STW (name) /1000

ROTY 60
TEXT 0.003, 0, "Hotel"
RICHTEXT

RICHTEXT x, v,
height, 0, textblock name

A 3D representation of a previously defined TEXTBLOCK. For more details, see the TEXTBLOCK command.
x, y: X-Y coordinates of the richtext location.

height: thickness of the characters in meters.

textblock name: the name of a previously defined TEXTBLOCK.

In the current version of GDL, the 4th parameter is always zero.

PRIMITIVE ELEMENTS

The primitives of the 3D data structure are VERT, VECT, EDGE, PGON and BODY. The bodies are represented by their surfaces and the
connections between them. The information to execute a 3D cutaway comes from the connection information.

Indexing starts with 1, and a BASE statement or any new body (implicit BASE statement) resets indices to 1. For each edge, the indices of the
adjacent polygons (maximum 2) are stored. Edges’ orientations are defined by the two vertices determined first and second.

Polygons are lists of edges with an orientation including the indices of the edges. These numbers can have a negative prefix. This means that
the given edge is used in the opposite direction. Polygons can include holes. In the list of edges, a zero index indicates a new hole. Holes must

GDL Reference Guide 131

3D Shapes

not include other holes. One edge may belong to 0 to 2 polygons. In the case of closed bodies, the polygon’s orientation is correct if the edge
has different prefixes in the edge list of the two polygons.

The normal vectors of the polygons are stored separately. In the case of closed bodies, they point from the inside to the outside of the body.
The orientation of the edge list is counterclockwise (mathematical positive), if you are looking at it from the outside. The orientation of the
holes is opposite to that of the parent polygon. Normal vectors of an open body must point to the same side of the body.

To determine the inside and outside of bodies they must be closed. A simple definition for a closed body is the following: each edge has exactly
two adjacent polygons.

The efficiency of the cutting, hidden line removal or rendering algorithms is lower for open bodies. Each compound three-dimensional element
with regular parameters is a closed body in the internal 3D data structure.

Contour line searching is based on the status bits of edges and on their adjacent polygons. This is automatically set for compound curved
elements but it is up to you to specify these bits correctly in the case of primitive elements.

In the case of a simplified definition (vect = 0 or status < 0 in a PGON) the primitives that are referred to by others must precede their
reference. In this case, the recommended order is:

VERT (TEVE)

EDGE

(VECT)

PGON (PIPG)
COOR

BODY

Searching for adjacent polygons by the edges is done during the execution of the BODY command.
The numbering of VERTs, EDGEs, VECTs and PGON:s is relative to the last (explicit or implicit) BASE statement.

Status values atre used to store special information about primitives. Each single bit usually has an independent meaning in the status, but there
are some exceptions.

Given values can be added together. Other bit combinations than the ones given below are strictly reserved for internal use. The default for
each status is zero.

VERT

VERT x, vy, z

A node in the x-y-z space, defined by three coordinates.
VERT{2}

VERT x, y, z, hard

GDL Reference Guide 132

3D Shapes

Extension of the VERT command including a possibility to declare a node to be hard vertex. A hard vertex defines a break when rendering
smooth surfaces.

X, y, Zz: coordinates of the node.

hard:
1: if the vertex should define a break when rendering smooth surfaces
0: otherwise

TEVE

TEVE x, y, 2z, u, V
Extension of the VERT command including a texture coordinate definition. Can be used instead of the VERT command if user-defined texture
coordinates are required instead of the automatic texture wrapping (see #he COOR command).

X, Yy, Zz: coordinates of a node.
u, v: texture coordinates of the node (u, v) coordinates for each vertex of the current body must be specified and each vertex should have

only one texture coordinate. If VERT and TEVE statements are mixed inside a body definition, (u, v) coordinates are ineffective.

Note: The (u, v) texture coordinates are only effective in photorenderings, and not for vectorial fill mapping.

VECT
VECT x, vy, z

Definition of the normal vector of a polygon by three coordinates. In case of a simplified definition (vect=0 in a PGON), these statements
can be omitted.

EDGE

EDGE vertl, vert2, pgonl, pgon2, status

Definition of an edge.

vertl, vert2: index of the endpoints. The vertl and vert2 indices must be different and referenced to previously defined VERTS.
pgonl, pgon2: indices of the neighboring polygons. Zero and negative values have special meanings:

0: terminal or standalone edge,
< 0: possible neighbors will be searched for,

status: Status bits:
status = j; + 2*jy + 4*j3 + 8%jg + 16*Js5 + 32*%jg + 64*j7 + 262144%*719, where each jcan be 0 or 1.
j1: invisible edge,

GDL Reference Guide 133

3D Shapes

j2: edge of a curved surface.

Reserved status bits for future use:

j3: first edge of a curved surface (effective only when j2=1),

Ja: last edge of a curved surface (effective only when j2=1),

js: the edge is an arc segment,

Je: first segment of an arc (effective only when j4=1),

j7: last segment of an arc (effective only when j4=1),

J19: render sharp edge between 2 curved polygons (effective only when j2=1).

PGON

PGON n, vect, status, edgel, edge2, ..., edgen
Polygon definition.

n: number of edges in the edge list.

vect: index of the normal vector. It must refer to a previously defined VECT.

Note: If vect = 0, the program will calculate the normal vector during the analysis.

edgel, edge2, ..., edgen: theseindices must refer to previously defined EDGEs. A zero value means the beginning or the end
of a hole definition. A negative index changes the direction of the stored normal vector or edge to the opposite in the polygon. (The stored
vector or edge does not change; other polygons can refer to it using the original orientation with a positive index.)

status: Status bits:
status = j; + 2*jy + 16*Js + 32%*jg + 64*j7 + 4*j3 + 8*Jj4, wherecachjcanbeOor 1.
j1: invisible polygon,
j2: polygon of a curved surface,
js: concave polygon,
Jje: polygon with hole(s),
j7: hole(s) are convex (effective only when j6=1),
Reserved status bits for future use:

j3: first polygon of a curved surface (effective only when j2=1),
Ja: last polygon of a curved surface (effective only when j2=1).

If the status value is negative, the engine will calculate the status of the polygon (like concave polygon or polygon with hole).

n = 0 is allowed for special purposes.

GDL Reference Guide 134

3D Shapes

PGON{2}
PGON{2} n, vect, status, wrap, edge or wrapl, ..., edge or wrapn
The first three parameters are similar to the ones at the PGON command.
wrap: wrapping mode + projection type.
0: the global wrapping mode is applied,
> 0: the meaning is the same as it is in the COOR command.

edge or wrapl, ..., edge or wrapn: The number and meaning of these parameters are based on the wrap definition:

edgel, ..., edgen: if wrap is 0;in this case edgen means the same as at the PGON command, and globally defined texture
mapping will be applied;
x1l, yl, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4, edgel, ..., edgen: ifwrapping modeisn't 0in wrap;

in this case xi, yi, zi coordinates defining the coordinate system of the texture mapping for the polygon;
edgel, ul, vl, ..., edgen, un, vn: ifwrapping modeis 0 but projection typeisn't 0in wrap;in this case ui, vi texture
space coordinates are the same as at the TEVE command; the mapping will affect the currently defined polygon only.

PGON/{3}

PGON{3} n, vect, status, wrap method, wrap flags, edge or wrapl, ..., edge or wrapn

The parameters are similar to the the PGON{2} command, except wrap, which is split into two parameters wrap method and
wrap_flags. The meaning of these is the same as in the COOR{2} command.

PIPG
PIPG expression, a, b, mask, n, vect, status,
edgel, edge2, ..., edgen

Picture polygon definition. The first four parameters are the same as in the PICTURE command; the remaining ones are the same as in the
PGON command.

COOR
COOR wrap, vertl, vert2, vert3, vertd
Deprecated. See the COOR{3} command.
Local coordinate system of a BODY for the fill and texture mapping.
wrap: wrapping mode + projection type
Wrapping modes:
1: planar box (deprecated),

GDL Reference Guide 135

3D Shapes

box,

cylindrical,

spherical,

same as the cylindrical fill mapping, but in rendering the top and the bottom surface will get a circular mapping,

o U1 W W N

: planar,
7: NURBS based, the vertices' texture coordinates are from their surface parameters, only in case of NURBS bodies.

Projection types:
256: the fill always starts at the origin of the local coordinate system,
1024 : quadratic textute projection (recommended),
2048 : linear texture projection based on the average distance,
4096: linear texture projection based on normal triangulation.

Note: The last three values are only effective with custom texture coordinate definitions (see the TEV'E command).

vertl: index of a VERT, representing the origin of the local coordinate system.
vert2, vert3, vertd: indices of VERTSs defining the three coordinate axes.
Use a minus sign (-) before VERT indices if they are used only for defining the local coordinate system.

e,
—_—
—_—

=

i
i

—

b

i
i

!
i

i}
it

it

GDL Reference Guide 136

3D Shapes

Example: For custom texture axes:

CSLAB_ "Brick-White", "Brick-White", "Brick-White",
4, 0.5,
o, 0, 0, 15,
1, 0, 0, 15,
i, 1, 1, 15,
o, 1, 1, 15
BASE
VERT 1, 0, 0 !'#1
VERT 1, 1, 1 '#2
VERT 0, 0, 0 !'#3
VERT 1, 0, 1 !#4
COOR 2, -1, -2, -3, -4
BODY 1
7
e,
z i
)
SR
X /-
COOR{2}

COOR{2} wrap method, wrap flags, vertl, vert2, vert3, vertd
Deprecated. See the COOR{3} command.

Similar to the COOR command, changing wrap to two parameters wrap methodand wrap flags, and also extending the possibilities
of it.

GDL Reference Guide 137

3D Shapes

wrap_method: Wrapping methods are the same as described in the the COOR command.

wrap_flags: Wrapping flags
wrap flags = 4*j3 + 8%j4 + 16*js + 32%je + 64*j7 + 128%*jg, where eachjcanbe O or 1.
j3: quadratic texture projection (recommended),
Ja: linear texture projection based on the average distance,
js: linear texture projection based on normal triangulation,
jg: translate the origin of the texture coordinate system closest to the global origin in the direction of the X, Y or Z axis respectively. For
example, j 6 makes the origin translating in the direction of the X axis (along v2 - v1 vector) so that it will be the orthogonal projection
of the global origin to the line of the X axis. That is, if all 76, 7 and j 8 are 1, the origin is translated into the global origin (same as if
projection type is 256 in the the COOR command).

Note: The 3, j4 and j 5 flags are only effective if wrap method is 0 and only one of them can be 1. The j 6, j7 and j 8 flags are only
effective if wrap method is not 0. These can be 1 at the same time in any combination.

vertl, vert2, vert3, vertd: likein the COOR command.

COOR{3}

COOR{3} wrapping method, wrap flags,
origin X, origin Y, origin 7,
endOfX X, endOfX Y, endOfX 7,
endOfY X, endOfY Y, endOfY Z,
endOfZz X, endOfZ Y, endOfZ %

Compatibility: introduced in ARCHICAD 20.
Similar to the COOR {2} command. Can be used with array parameter input (see WALL_TEXTURE_WRAP global in the section called “Wall
parameters - available for Doors/Windows, listing and labels” for more).

The cootdinate system of the projection body is included in the COOR {3} command itself, no need to define additional vertexes in the current
BODY. Compatible with NURBS bodies (no non-NURBS primitives are needed to set up the texture coordinate system).
wrap_method: Wrapping methods are the same as described in the the COOR command.
wrap_flags: Wrapping flags
wrap flags = 4*j3 + 8%j4 + 16*Js + 32%je + 64*j7 + 128%*jg, where cachjcanbeOor 1.
j3: quadratic texture projection (recommended),
Ja: linear texture projection based on the average distance,
js: linear texture projection based on normal triangulation,

GDL Reference Guide 138

3D Shapes

jg: translate the origin of the texture coordinate system closest to the global origin in the direction of the X, Y or Z axis respectively. For
example, j 6 makes the origin translating in the direction of the X axis (along v2 - v1 vector) so that it will be the orthogonal projection
of the global origin to the line of the X axis. That is, if all 76, 7 and j 8 are 1, the origin is translated into the global origin (same as if
projection type is 256 in the the COOR command).

Note: The j 3, 74 and j 5 flags are only effective if wrap method is 0 and only one of them can be 1. The j 6, j7 and j 8 flags are only
effective if wrap method is not 0. These can be 1 at the same time in any combination.

origin X, origin_ Y, origin_ Z: node in the x-y-z space, defined by three coordinates, texture origin.

endOfX X, endOfX Y, endOfX Z: node in the x-y-z space, defined by three coordinates, texture mapping X direction.

endOfY X, endOfY Y, endOfY Z: node in the x-y-z space, defined by three coordinates, texture mapping Y direction.

endOfZ X, endOfZ Y, endOfZ Z: node in the x-y-z space, defined by three coordinates, texture mapping Z direction.

Example: COOR{3} and equivalent COOR{2} parametrisation

COOR{3} wrapping method, wrap flags,
origin X, origin Y, origin Z,
endOfX X, endOfX Y, endOfX 2,
endOfY X, endOfY Y, endOfY Z,
endOfZz X, endOfZ Y, endOfZ %

! COOR{2} equivalent

BASE

VERT origin X, origin Y, origin Z,
VERT endOfX X, endOfX Y, endOfX 2
VERT endOfY X, endOfY Y, endOfY Z
VERT endOfZ X, endOfZ Y, endOfZ 2

COOR{2} wrapping method, wrap flags, -1, -2, -3, -4

BODY
BODY status
Composes a body defined with the above primitives.

status: Status bits:

GDL Reference Guide 139

3D Shapes

status = j; + 2*jy + 4*j3 + 32*jg + 64*J7, wherecachjcanbeOor 1.
j1: closed body (deprecated),

j2: body including curved surface(s) (deprecated),

j3: surface model: when the body is cut, no surface originates on the cutting plane,

Je: body always casts shadow independently from automatic preselection algorithm,
Jj7: body never casts shadow.

If neither j6 nor j7 are set, the automatic shadow preselection is performed.

See the SHADOW command.

If the status value is negative, the engine will calculate the status of the body.

Excample:
z
5 8
6 7
1 4
y
2 3
X

1: Complete description

GDL Reference Guide 140

3D Shapes

VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
EDGE
EDGE
EDGE
EDGE
EDGE
EDGE
EDGE
EDGE
EDGE
EDGE
EDGE
EDGE
VECT
VECT
VECT
PGON
PGON
PGON
PGON
PGON
PGON
BODY 1

PFRPRPOORrRREF OO
L T

GO WAOANNDNNRERRE R

.
OSSN OO OOS N N N SN N N S S N~ N~ ~

ecloloNolololoNe)

O ~JOoO U ~JoORFRdWNSY ¥~~~ 5 5~ 8 s
ecloloNolololoNe)

N N N SN SN N N~ O~

U WU Wo Ul b W

¢ N N N N N N N N N SN N~ 0~
| PO OS S S N~ S~ 8~ N S~ N~ S~~~

O OO

3, 0

DRSS DDPOORLRPPWNRFOJIJONUPDWNRPRORPOOR O

4
1, 0, 2
4

PFRPRPRPRPRPOOOO
P T T Y

o e e
clololololololoNolololoNololololoNololoNoNeoNe]

9,

-6,
-7,
-3,

T#1
Y#2
Y#3
Y44
Y#5
L#6
Y47
148
T#1
Y2
Y43
'#4
'#5

-2

-9
-10
-11
-12

T#1
Y2
Y#3
'#4
'#5
'#6

2: (no direct reference to the polygons or the vectors, they will be calculated)

GDL Reference Guide

141

3D Shapes

VERT 0.0, 0.0, 0.0 T#1

VERT 1.0, 0.0, 0.0 Y#2

VERT 1.0, 1.0, 0.0 Y#3

VERT 0.0, 1.0, 0.0 '#4

VERT 0.0, 0.0, 1.0 '#5

VERT 1.0, 0.0, 1.0 '#6

VERT 1.0, 1.0, 1.0 Y#7

VERT 0.0, 1.0, 1.0 '#8

EDGE 1, 2, -1, -1, O T#1

EDGE 2, 3, -1, -1, O T#2

EDGE 3, 4, -1, -1, O Y#3

EDGE 4, 1, -1, -1, O '#4

EDGE 5, 6, -1, -1, O '#5

EDGE 6, 7, -1, -1, O '#6

EDGE 7, 8, -1, -1, O VH#7

EDGE 8, 5, -1, -1, O '#8

EDGE 1, 5, -1, -1, O 149

EDGE 2, 6, -1, -1, O 1#10

EDGE 3, 7, -1, -1, O T#11

EDGE 4, 8, -1, -1, O '#12

PGON 4, O, -1, -1, -4, -3, -2 T#1
'VERT1,2,3,4

PGON 4, 0, -1, 5, 6, 7, 8 T#2
!VERT5,6,7,8

pGoN 4, 0, -1, 1, 10, -5, -9 Y#3
!VERT1,2,5,6

pPGON 4, O, -1, 2, 11, -6, -10 '#4
'VERT2,3,6,7

PGON 4, O, -1, 3, 12, -7, -11 1#5
!VERT3,4,7,8

PGON 4, 0, -1, 4, 9, -8, -12 '#6
!VERT1,4,5,8

BODY -1 ! CUBE
BASE

BASE

Resets counters for low-level geometric elements (VERT, TEVE, VECT, EDGE, PGON and PIPG) statements. Implicitly issued after every
compound element definition.

GDL Reference Guide 142

3D Shapes

NURBS PRIMITIVE ELEMENTS

The primitives of 3D data structure of NURBS bodies are the NURBSCURVE2D command, the NURBSCURVE3D command,
the NURBSSURFACE command, the NURBSVERT command, the NURBSEDGE command, the NURBSTRIM command, the
NURBSTRIMSINGULAR command, the NURBSFACE command, the NURBSLUMP command, and the NURBSBODY command.

Solid NURBS bodies are represented by the boundary NURBS faces of the solid region(s), laminar surface NURBS bodies are represented by
the NURBS faces themself, wire NURBS bodies are represented by the NURBS edges. A NURBS body can have solid, laminar and wire part
at the same time, a NURBS body itself is not classified into solid/sutface/wire categoties.

Nurbs primitives can not be used in planar face bodies and non-NURBS primitives can not be used in NURBS bodies. A non-NURBS
primitive statement causes the NURBS body under construction to be finished and a new non-NURBS body to be started (implicit BODY
and NURBSBODY statements).

Similarly a NURBS primitive statement causes the non-NURBS body under construction to be finished and a new NURBS body to be started. A
compound statement (BRICK, CYLIND, PRISM, etc.) or a MODEL statement causes either NURBS or non-NURBS body under construction
to be finished. If a NURBSBODY statement closes a non-NURBS body or a BODY statement closes a NURBS body, the given status value
will have no effect.

Indexing of NURBS primitives starts from 1. Indexing of NURBS primitives and non-NURBS primitives (VERT, TEVE, EDGE, VECT,
PGON, PIPG) are handled separately. The BASE statement resets counter for NURBS body primitives also. All primitives referenced by
another primitive should be defined before the referencing one (e.g. vertices and 3D curve of edge should be defined before the edge).

The NURBSCURVE2D, NURBSCURVE3D and NURBSSURFACE statements create only geometrical elements in the NURBS body which
will not be visible themselves. A NURBS edge defines its geometrical support by referencing a 3D NURBS curve, similarly a NURBS trim
references a 2D NURBS curve and a NURBS face references a NURBS surface as its geometrical support (the edge, trim and face may not
extend to the whole geometrical support, see details at each command description).

The NURBS edge, its 3D curve, its trims, and the 2D curves of the trims are always oriented consistently. The NURBS face and its surface
are always oriented consistently.

The NURBS faces may be organized into NURBS lumps. A lump defines a solid region bounded by one or more shells. A shell is a closed
and connected set of faces which separates the space into two regions. A lump has an outer shell which separates the lump from the infinity
and may have void shells which separate the lump from inner cavities.

Consistent orientation of faces in a shell is not necessary, two neighbouring face can refer to the same edge in the same direction. But shells
of lump must have consistent orientations, the back side of a shell should look toward the interior of the lump, for this the lump can refer to
the faces with negative prefix for reversed orientation.

Faces which are not part of a lump will be treated as laminar surfaces, even if the faces form a closed shell. Edges which are not part of a face
will be treated as wire edges. One NURBS body can contain solid lumps, laminar faces and wire edges at the same time.

GDL Reference Guide 143

3D Shapes

The 2-manifold property is not required for NURBS bodies, a NURBS edge may be connected to more than two faces (by more than two
trims). Even a shell of a NURBS lump can have more than two faces at an edge as long as the shell still separates the space into two regions
(this means even number of faces of a given shell on each edge).

The RADIUS, RESOL and TOLER statements have no effect on the smoothness of the NURBS faces and edges. The smoothness of NURBS
primitives is calculated automatically and may be limited for a NURBS body by the parameters of the NURBSBODY command (see details
at NURBSBODY).

For cotrect texture setting for NURBS, see the the COOR{3} command.

NURBS Face trimming

A NURBS surface is a two dimensional sheet in the three dimensional space and is defined by a geometrical function mapping a rectangle to the
space. The geometry of a NURBS face is always a part of a NURBS surface but may be more complex than that. This is made possible by trims.
A trim defines a cut on the domain rectangle of the surface, a cut with a two dimensional NURBS curve. This implies a cut on the three
dimensional sheet of the surface. This cut lies along the bounding NURBS edge of the face and the geometry of the cut along the surface sheet
must be consistent with the geometry of the NURBS edge.

A NURBS face has contours just like a traditional PGON, but the contours are not lists of NURBS edges but NURBS trims because the trims
have the information needed to cut the face properly. (The 2d curve of trims may be computed from the 3d curve of the edge but it may be
inaccurate or even ambiguous in case of surfaces with self-intersection or singularities or in case of erroneous data.)

NURBS Geometry Commands

The following commands describe geometrical parts of NURBS elements: curves and surface.

NURBSCURVE2D

NURBSCURVE2D degree, nControlPoints,
knot 1, knot 2, ..., knot m,
cbPoint 1 x, cPoint 1 y, weight 1,
cbPoint 2 x, cPoint 2 y, weight 2,

ceey
cPoint n x, cPoint n y, weight n

GDL Reference Guide 144

3D Shapes

NURBSCURVE3D
NURBSCURVE3D degree, nControlPoints,
knot 1, knot 2, ..., knot m,
cbPoint 1 x, cPoint 1 y, cPoint 1 z, weight 1,
cbPoint 2 x, cPoint 2 y, cPoint 2 z, weight 2,
cPoint n x, cPoint n y, cPoint n z, weight n
2 and 3 dimensional NURBS curves with given degree, knotvector, controlpoints and weigths.
degree: degree of NURBS curve, one less than order of curve (order = degree + 1), positive
nControlPoints: number of control points (n), greater than the degree of the curve (not less than the order)

knot_i: indexiknot value
* number of knot values (m, the size of knot vector) is given by the following: m = degree + 1 + n
* knots are in non-descending order (knot_i <= knot_{i+1})
* cqual knot values are allowed, with multiplicity up to degree, or with multiplicity up to degree+1 for the first and last knot.

cPoint_i x, cPoint i _y, cPoint_ i_z: coordinates of index i control point
weight i: weigth of index i control point, positive
Periodic curves are not handled separately, but described as floating (not clamped) NURBS curves which are geometrically closed and have

appropriately continuous connection at the the ends. This is ensured by repeating sufficient number of control points and knot-intervals at
the end:

* the last degree many control points are duplicates of the first degree many control points (not in reverse order),
* the first twice-the-degree number of knot-differences (knot_1-knot_0, knot_2-knot_1, ...) are the same as the last ones in the knot vector
(these are the knots which are in connection with the first (or last) degree many control points).

The usable domain of a curve is the closed interval between knot_{degtee + 1} and knot_{m - degtee}.

GDL Reference Guide 145

3D Shapes

NURBSSURFACE

NURBSSURFACE degree u, degree v, nu, nv,
knot u 1, knot u 2, ..., knot u mu,
knot v 1, knot v 2, ..., knot v mv,
cPoint 1 1 x, cPoint 1 1 y, cPoint 1 1 z, weight 1 1,
cPoint 1 2 x, cPoint 1 2 y, cPoint 1 2 z, weight 1 2,

LI 4
cbPoint 1 nv _x, cPoint 1 nv_ y, cPoint 1 nv z, weight 1 nv,

cPoint 2 1 x, cPoint 2 1 y, cPoint 2 1 z, weight 2 1,

cPo’int_nu_nv_x, cbPoint nu nv_y, cPoint nu nv_z, weight nu nv
3-dimensional NURBS sutface with u-v parameter space, given degree, knotvectors in u and v directions and given controlpoint, weigth net.
Degrees are one less than orders of surface (order_u = degree_u + 1), degtees are positive.
degree_u: degree of surface in the u parameter direction
degree_v: degree of surface in the v parameter direction
nu, nv: number of control points in u and v directions, greater than degree (not less than order) of then surface in given direction

knot u i, knot_v_i: indexiknot value in uand v directions
* their number (the size of knot vector) is given by the following: mu = degree_u + 1 + nu
* knots are in non-descending order (knot_u_i <= knot_u_{i+1}, knot_v_i <= knot_v_{i+1})
* cqual knot values are allowed, with multiplicity up to degree, or with multiplicity up to degree+1 for the first and last knot.
cPoint_i_ j x, cPoint i j y, cPoint_i_ j_z: control point on the control point net, index i in the u direction, index j in
the v direction
weight i Jj: weight for control point cPoint_ij, positive

Surfaces may be periodic in either (u or v) direction or in both directions. Periodic surfaces are not handled separately, but described as floating
(not clamped) NURBS surfaces which are geometrically closed and have appropriately continuous connection at the the ends. This is ensured
the same way as in case of curves.

The usable domain of a surface is the cross product of the closed intervals between knot_u_{degree_u + 1}, knot_u_{mu - degtee_u} and
knot_v_{degree_v + 1}, knot_v_{mv - degtee_v} respectively.

NURBS Topology Commands

The following commands describe topological parts of NURBS elements.

GDL Reference Guide 146

3D Shapes

NURBSVERT

NURBSVERT x, vy, z, hard, tolerance

Vertex, a node of a NURBS body. Different from any vertex created by the VERT command, indexed separately from those. Can be used in
NURBS bodies only, excluding planar-face bodies.

X, y, 2z: coordinates of vertex

hard:
1: if the vertex should define a break when rendering smooth surfaces,
0: otherwise.

tolerance: maximum geometrical distance between NURBS vertex and other entities NURBS edge, NURBS face) which are topologically
connected to it. If negative, tolerance will be some predefined default.

NURBSEDGE

NURBSEDGE vertl, vert2, curve, curveDomainBeg, curveDomainEnd, status, tolerance

Edge of a NURBS body. Different from any edge created by the EDGE command, indexed separately from those. Can be used in NURBS
bodies only, excluding planar-face bodies.

vertl, vert2: gdl-index of begin and end NURBS vertices
* vertl and vert2 can be equal. In this case the edge is a loop edge (and its curve is closed or has a closed part)
* vertl and vert2 can be zero for a ring edge (which has no vertices and its curve is closed or has a closed part)

curve: gdl-index of NURBS curve for the geometry of edge. Positive index, orientation of edge always coincide with orientation of the curve.

curveDomainBeg, curveDomainEnd: definition of the part of curve which geometrically represents the edge. The curveDomainEnd
must be greater than curveDomainBeg, they must not coincide, and both value must be in the usable domain of the curve.

status: status control of the edge:
status = j; + 2*j, + 4*7j3, whereeachjcanbe0or 1.
j1: invisible edge (may be set only if j2 is not set).
j2: edge only visible if contour (may be set only if j1 is not set).
j3: smooth edge (edge does not define a break when rendering smooth surfaces).
If both j1 and j2 are set, the edge will produce an error causing the whole NURBS-body to vanish.

tolerance: maximum geometrical distance between NURBS edge and other entities (NURBS face) which are topologically connected to
it. If negative, tolerance will be some predefined default.

GDL Reference Guide 147

3D Shapes

The curve evaluated at each endpoint should coincide with the position of the appropriate vertex. The edge can be a ring edge with no vertex.
In this case the edge restricted to [curveDomainBeg, curveDomainEnd] must be closed, i.e. it evaluates equally at each endpoints. Any number
of edges can be attached to a vertex. The color of a NURBS edge is defined by the last PEN statement.

NURBSTRIM

NURBSTRIM edge, curve, curveDomainBeg, curveDomainEnd, tolerance

NURBSTRIMSINGULAR

NURBSTRIMSINGULAR vertex, curve, curveDomainBeg, curveDomainEnd, tolerance

A bounding edge of a face. Used for trimming a face in the parameter space of the surface of the face. NURBSTRIMSINGULAR is used along
singular sides of the surface (which side is contracted to one point on the surface). Connects the face to an edge (or to a vertex in singular case).

edge: gdl-index of NURBS edge to which this trim is attached. Positive index, edge and trim are always oriented consistently.
vertex: gdl-index of NURBS vertex to which this trim is attached (singular case).

curve: gdl-index of a 2D NURBS curve. Positive index, curve and trim are always oriented consistently. It is defined on the domain (u-
v parameter space) of the surface of the face.

curveDomainBeg, curveDomainEnd: definition of the part of curve which geometrically represents the trim. The curveDomainEnd
must be greater than curveDomainBeg, they must not coincide, and both value must be in the usable domain of the curve.

tolerance: maximum geometrical distance between 2D curve of NURBS trim and other entities (other NURBS trims) which are
topologically connected to it. If negative, tolerance will be some predefined default.

The curve restricted to [curveDomainBeg, curveDomainEnd] interval should completely lie within the usable domain of the surface of the
face (with given tolerance). For NURBSTRIMSINGULAR the 2D curve must lie along a singular side of the usable domain (u-v parameter
space) of the surface of the face.

The composition of the restricted 2D curve and the surface gives a 3D curve which should coincide with the restricted 3D curve of the edge.
Therefore the 2D curve evaluated at curveDomainBeg and curveDomainEnd should coincide with the position of the appropriate vertex. In
the singular case the composition of the 2D curve and the surface gives a 3D point, which should coincide with the given vertex.

Indexing of singular and non-singular trims is common.
Any number of trims can refer to each edge (so indirectly any number of face can be attached to an edge). The edge can be non-2-manifold.

Two trims on one edge may belong to the same face, in this case edge is called a seam edge. For example a mantle of a cylinder can be one
face with a seam edge.

GDL Reference Guide 148

3D Shapes

NURBSFACE

NURBSFACE n, surface, tolerance,
triml, trim2, ..., trimn

Face of a NURBS body. Different from any polygon created by the PGON command, indexed separately from those. Can be used in NURBS
bodies only, excluding planar-face bodies.

n: number of bounding edges (including optional hole-separator zeros).

surface: gdl-index of a NURBS surface supporting the face. Positive index, orientation of face is always identical to the orientation of
surface.
trimi: gdl-index of NURBS trim bounding the face.
* The trims are listed in a counter-clocwise (mathematical positive) order on the surface for the outer contour loop and clockwise (negative)
for hole contour loop(s).
* May be zero, which indicates end of contour (hole-separator).
* Negative index means trim and the contour (of face) have opposite orientation.
tolerance: if negative, tolerance will be some predefined default.
The trims must connect at common vertices: the end vertex of a trim is the same as the begin vertex of the next trim in the face. (The vertices
of a trim are the vertices of the edge of the trim for a non-singular trim.)
The consecutive trims - as 2D curves - also connect in the domain (parameter space) of the face, defining one or more closed contour loops
on it. The first loop is always an outer loop which separates an infinite outer and a finite inner region on the plane. The potential subsequent
loops are hole contours.
The 2D curve of each trim should completely lie inside the usable domain of the surface of the face and should not intersect itself or curves
of other trims of the face. Each trim must be used in only one face.
The material and section attributes of a face are determined by the last MATERIAL and SECT ATTRS (or SECT_FILL) statements
respectively. The color of the edges inside the face created for polygonal segmentations is defined by the last PEN statement. This is practically
visible on silhouettes coming from the internal of this face.

NURBSLUMP
NURBSLUMP n, facel, face2, ..., facen
Defines a solid part - a geometrically connected subset - of a solid NURBS body.

n: number of bounding faces (including optional void-separator zeros).

facei: gdl-index of NURBS face bounding the lump
* May be zero, indicating the end of shell and the beginning of another shell (void-separator).

GDL Reference Guide 149

3D Shapes

* Negative index means face is used in opposite direction. For positive index the backward side of the face correspond to the interior of
the lump, for negative index the front side looks to the interior.

The boundary of a lump may fall to several closed shells: one outer shell which separates the lump from the infinite outer region of the space;
and zero or more inner - void - shells which separate the lump from cavity regions. The faces of one shell must compose a continuous part
of the face list. These different parts for different shells must be separated by a 0 value. The first shell must be the outer shell. The faces of a
shell must connect at common edges, but no ordering is assumed in the list.

Note that the faces of a shell may be connected to other faces which are not in the shell or are in another shell (because edges can have more
than two faces). Each face must be used in only one lump. Neither shell of a lump can be open - open bodies have no lumps and no shells.

NURBSBODY
NURBSBODY shadowStatus, smoothnessMin, smoothnessMax
Composes a NURBS body defined with the above NURBS primitives.
shadowStatus: status for shadow control:
shadowStatus = 32*jg + 64*j7, where eachj can be 0 or 1.
Je: NURBS body always casts shadow independently from automatic preselection algorithm,
j7: NURBS body never casts shadow.
If neither j6 nor j7 are set, the automatic shadow preselection is performed. See the SHADOW command.
smoothnessMin, smoothnessMax: limits of automatically calculated smoothness parameter for tessellation of the surfaces and
curves of body. The automatically calculated parameter will be always in the range 0 to 1 inclusive, so that smoothnessMin <= 0 means no

lower limit and smoothnessMax >= 1 means no upper limit. If smoothnessMin > smoothnessMax, values will not affect the automatically
calculated smoothness.

Any non-NURBS primitive statement (VERT, TEVE, EDGE, VECT, PGON, PIPG, BODY) or any compound statement (BRICK, CYLIND,
PRISM, REVOLVE, etc.) causes the NURBS body under construction to be finished (implicit NURBSBODY statement). In this case
smoothness limits will not be set and shadowStatus will be zero (status parameter of BODY statement will not be passed).

PoiNT CLOUDS

POINTCLOUD
POINTCLOUD "data file name"
Generates a point cloud in the 3D model. A point cloud is a set of 3D points with color and other possible metadata stored per each point.

data file name: the name of the loaded library part containing the point cloud data. Must be a string expression.

GDL Reference Guide 150

3D Shapes

Point clouds are not displayed by the Internal 3D Engine. The 2D is projected, using cutplanes to filter the unnecessary points.

CuTTING IN 3D

CUTPLANE

CUTPLANE [x [, v [, z [, side [, status]]]]]
[statementl ... statementn]
CUTEND

CUTPLANE{2}

CUTPLANE{2} angle [, status]
[statementl ... statementn]
CUTEND

CUTPLANE{3}

CUTPLANE({3} [x [, v [, z [,
[statementl ... statementn]
CUTEND

side [, status]]]]]

Creates a cutting plane and removes the cut parts of enclosed shapes. CUTPLANE may have a different number of parameters.

If CUTPLANE has the following number of parameters:

: x-y plane;

: cutting plane goes across x axis, angle is between cutting plane and x-y plane;
: cutting plane is parallel to z axis, crosses x axis and y axis at the given values;

: cutting plane crosses the x, y and z axes at the given values;

A LN = O

: the first three parameters are as above, with the addition of the side value as follows:

side: definition of the side to cut.
0: removes parts above cutting plane (default),
1: removes parts below cutting plane; in case of x-y, x-z, y-z, removes the parts in the negative direction of the axis.

status: status control of the cut surfaces. If the status is not given the status is set to 1+2 automatically.
status = j; + 2*Jj2 + 4*j3 + 256%*j9, where each jcanbe O or 1.
j1: use the attributes of the body for the generated polygons and edges.
jo2: generated cut polygons will be treated as normal polygons.
j3: generated cut edges will be invisible.

GDL Reference Guide

151

3D Shapes

Jo: vertices on the cutting plane are treated as removed.

The cut (without the side parameter) removes parts above the cutting plane. If the first three parameters define the x-y, x-z or y-z plane (for
example, 1.0, 1.0, 0.0 defines the x-y plane), the parts in the positive direction of the third axis are removed.

Any number of statements can be added between CUTPLANE and CUTEND. It is also possible to include CUTPLANEs in macros.
CUTPLANE parameters refer to the current coordinate system.

Transformations between CUTPLANE and CUTEND have no effect on this very cutting plane, but any successive CUTPLANEs will
be transformed. Therefore, it is recommended to use as many transformations to set up the CUTPLANE as necessary, then delete these
transformations before you define the shapes to cut.

If transformations used only to position the CUTPLANE are not removed, you may think that the CUTPLANE is at a wrong position when,
in reality, it is the shapes that have moved away.

Pairs of CUTPLANE-CUTEND commands can be nested, even within loops. If the final CUTEND is missing, its corresponding CUTPLANE

will be effective on all shapes until the end of the script.

Note 1: If CUTPLANE is not closed with CUTEND, all shapes may be entirely removed. That’s why you always get a warning message
about missing CUTEND:s.

CUTPLANES in macros affect shapes in the macro only, even if CUTEND is missing.

If a macro is called between CUTPLANE and CUTEND, the shapes in the macro will be cut.

Note 2: If you use CUTPLANE {2} with more than two parameters, then this will act like CUTPLANE.

Note 3: Prefer using CUTPLANE{3} instead of CUTPLANE. If you use CUTPLANE with 5 parameters, then the 4th parameter will be
omitted. For CUTPLANE {3}, this parameter has effect independently from the 5th parametet.

GDL Reference Guide 152

3D Shapes

Example 1:

CUTPLANE 2, 2, 4
CUTPLANE -2, 2, 4
CUTPLANE -2, -2, 4
CUTPLANE 2, -2, 4
ADD -1, -1, O
BRICK 2, 2, 4

DEL 1

CUTEND

CUTEND

CUTEND

CUTEND

Example 2:

CUTPLANE CUTPLANE 1, 1, 0, 1

SPHERE 2 SPHERE 2
CUTEND CUTEND

GDL Reference Guide 153

3D Shapes

Example 3:

CUTPLANE 1.8, 1.8, 1.8 CUTPLANE 1.8, 1.8, 1.8, 1
SPHERE 2 SPHERE 2

CUTEND CUTEND

Example 4:

CUTPLANE 60 CUTPLANE -120

BRICK 2, 2, 2 BRICK 2, 2, 2

CUTEND CUTEND

GDL Reference Guide 154

3D Shapes

CUTPOLY

CUTPOLY n,
x1l, vyi1,
[I Xy Yy
[statementl
statement?2

statementn]
CUTEND

A4

z]

xn,

yn

Similarly to the CUTPLANE command, parameters of CUTPOLY refer to the current coordinate system. The polygon cannot be self-
intersecting. The direction of cutting is the Z axis or an optional (x, y, z) vector can be specified. Mirroring transformations affect the cutting

direction in an unexpected way - to get a more straightforward result, use the CUTFORM command.

Exanmple 1:

e —————

AN

GDL Reference Guide

155

3D Shapes

ROTX 90
MULZ -1
CUTPOLY 3,
0.5, 1,
2, 2,
3.5, 1,
-1.8, 0, 1
DEL 1
BPRISM "Brick-Red", "Brick-Red", "Brick-White",
4, 0.9, 7,
0.0, 0.0, 15,
6.0, 0.0, 15,
6.0, 3.0, 15,
0.0, 3.0, 15
CUTEND
Example 2:
a=1.0
d=0.1
GOSUB "rect cut"
ROTX 90 N
GOSUB "rect cut"
DEL 1
ROTY -90
GOSUB "rect cut" —
DEL 1 - I"’“.....
BLOCK a, a, a g
CUTEND — |
CUTEND
CUTEND
END
"rect cut":
CUTPOLY 4,
d, d,
a-d, d,
a-d, a-d,
d, a-d
RETURN

GDL Reference Guide 156

3D Shapes

Example 3:

ROTX 90
FOR i=1 TO 3
FOR j=1 TO 5
CUTPOLY 4,

ADDX 1.2

NEXT

DEL 5

ADDY 1.2
NEXT i
DEL NTR()-1
ADD -0.2, -0.2, O
BRICK 6.2, 3.8, 1
FOR k=1 TO 15

CUTEND
NEXT k
DEL TOP

CUTPOLYA

CUTPOLYA n, status, d,
x1l, yl, maskl, ..., xn, yn, maskn [,
X, Y, Z]

[statementl

statement?2

statementn]

CUTEND

Similar to the CUTPOLY command, but with the possibility to control the visibility of the edges of the generated polygons. The cutting form
is a half-infinite tube with the defined polygonal cross-section. If the end of the cutting form hangs down into the body, it will cut out the
corresponding area.

GDL Reference Guide 157

3D Shapes

status: controls the treatment of the generated cut polygons.
1: use the attributes of the body for the generated polygons and edges,
2: generated cut polygons will be treated as normal polygons.

d: the distance between the local origin and the end of the half-infinite tube.
0: means a cut with an infinite tube.

maski: similar to the PRISM_ command.
maski = j; + 2*jp + 4*j3 + 64*7J, where eachj can be 0 or 1.

GDL Reference Guide

158

3D Shapes

Example:

ROTX 90
FOR i=1 TO 3

FOR j=1 TO 5
CUTPOLYA 6,

ADDX 1

NEXT
DEL 5
ADDY 1

NEXT i

DEL NTR()-1

ADD -0.2, -0.2,

BRICK 5.4, 3.4,

FOR k=1 TO 15
CUTEND

NEXT k

DEL TOP

Z
2,
Z

aac
o2

2z,
Z
Z

2,
2,

GDL Reference Guide

159

3D Shapes

CUTSHAPE

CUTSHAPE d [, status]
[statementl statement2 ... statementn]
CUTEND

status: controls the treatment of the generated cut polygons. If not specified (for compatibility reasons) the default value is 3.
status = j; + 2*J, where eachjcanbeOor 1.
j1: use the attributes of the body for the generated polygons and edges,
j2: generated cut polygons will be treated as normal polygons.

Example:

FOR 1 =1 TO 5
ADDX 0.4 * 1
ADDZ 2.5
CUTSHAPE 0.4
DEL 2
ADDX 0.4

NEXT i

DEL TOP

BRICK 4.4, 0.

FOR 1 =1 TO

CUTEND

NEXT i

5, 4
5

CUTFORM

CUTFORM n, method, status,
rx, ry, rz, d,
x1, yl, maskl [, matl],

xn, yn, maskn [, matn]
Similar to the CUTPOLYA command, but with the possibility to control the form and extent of the cutting body.
method: controls the form of the cutting body.
1: prism shaped,
2: pyramidal,

GDL Reference Guide 160

3D Shapes

3: wedge-shaped cutting body. The direction of the wedge’s top edge is parallel to the Y axis and its position is in rx, ry, rz (ry is ignored).

status: Controls the extent of the cutting body and the treatment of the generated cut polygons and new edges.
status = j1 + 2*jy + 8*j4 + 16*j5 + 32*jg + 64*j5 + 128*jg + 256*jg, where eachjcan be O or 1.
j1: use the attributes of the body for the generated polygons and edges,
jo2: generated cut polygons will be treated as normal polygons,
Jja: define the limit of the cut (with j5),
Js: define the limit of the cut (with j4):
Jje: generate a boolean intersection with the cutting body rather than a boolean difference. (can only be used with the CUTFORM
command),
j7: edges generated by the bottom of the cutting body will be invisible,
jg: edges generated by the top of the cutting body will be invisible,
Jo: cutting shape has custom side materials (mati).
j4
j4
34 = 1 and j5 = 1: infinite cut

0 and j5 = 0: finite cut

0 and j5 = 1: semi-infinite cut

rx, ry, rz: these three coordinates define the direction of cutting if the cutting form is prism-shaped; these three coordinates define
the top point of the pyramid if the method of cutting is pyramidal; rx-rz coordinates define the end edge of the wedge and ry is ignored
if the cutting from is wedge-shaped

d: defines the distance along rx, ry, rz to the end of the cut. If the cut is infinite, this parameter has no effect. If the cut is finite, then the start
of the cutting body will be at the local coordinate system and the body will end at a distance of d along the direction defined by rx, ry, rz.

GDL Reference Guide 161

3D Shapes

If the cut is semi-infinite, then the start of the cutting body will be at a distance of d along the direction defined by rx, ry, rz, and the direction
of the semi-infinite cut will be in the opposite direction defined by rx, ry, rz.

mask: defines the visibility of the edges of the cutting body.
mask = Jj1 + 2*j, + 4*J3 + 8*j4 + 16*j5 + 64*7J, where each j can be 0 or 1.
j1: the polygon will create a visible edge upon entry into the body being cut (except when cutting solid body with wedge-shaped cutform,
see below),
j2: the lengthwise edge of the cutting form will be visible,
j3: polygon will create a visible edge upon exiting the body being cut (except when cutting solid body with wedge-shaped cutform, see
below),
J4: the bottom edge of the cutting form will be visible,
Js: the top edge of the cutting form will be visible,
j7: controls the viewpoint dependent visibility of the lengthwise edge.
In case of cutting solid body with wedge-shaped cutform the values for visibility of entry-edges and exit-edges (j1 and J 3) are swapped.
This behavior is kept for compatibility reasons.

mati: side material of the cutting shape (when status j9 = 1)

CUTFORM{2}

CUTFORM{2} n, method, status,
rx, ry, rz, d,
x1l, yl, maskl [, matl],

xn; yn, maskn [, matn]
CUTFORM {2} is an extension of the CUTFORM command with the possibility of using inline material definition, that means materials defined
in GDL script locally also can be used next to materials defined in global material definitions.

SoLID GEOMETRY COMMANDS

GDL is capable of performing specialized 3D operations between solids represented by groups. These operations can be one of the following:

GDL Reference Guide 162

3D Shapes

ADDGROUP

SUBGROUP

ISECTGROUP

ISECTLINES

SWEEPGROUP

forming the Boolean union of two solids

forming the Boolean difference of two solids

forming the Boolean intersection of two solids

calculating the intersection lines of two solids

sweeping a solid along a vector

QD DAL

GDL Reference Guide

163

3D Shapes

A GDL solid is composed of one or more lumps that appear as separated bodies in the model. A lump has exactly one outer shell and may
contain voids. (Voids can be described as "negative" inner shells inside a lump.) The solid in the drawing below is composed of two lumps in

such a way that one of them contains a void.

GDL bodies such as BLOCK, SPHERE, etc., appear as outer shells in groups. By means of the following construction the user is capable of
putting more than one shell in a solid (note the BODY -1 statement):

GROUP "myGroup"
BLOCK 1,1,1

BODY -1

ADDX 1

BLOCK 1,1,1
ENDGROUP

The above solid contains two lumps; each of them is composed of one shell. Voids can be defined by means of primitives, or can occur as a
result of a Boolean difference (e.g subtracting a small cube from the middle of a big one).

See also the section called “Primitive Elements”.

Although group operations are intended to work with solid objects, they can be applied to surfaces, wireframes or hybrid models, too. (Hybrid
models are basically surfaces that may contain edges without neighboring faces.) The result of the operations on such models are summarized

in the following tables:

GDL Reference Guide 164

3D Shapes

Table 1. Union (base » tool)

solid base

surface base

wireframe base

hybrid base

solid tool

solid result

surface result (merging)

wireframe result (merging)

hybrid result (merging)

surface tool

surface result (merging)

surface result (merging)

hybrid result (merging)

hybrid result (merging)

wireframe tool

wireframe result (merging)

hybrid result (merging)

wireframe result (merging)

hybrid result (merging)

hybrid tool

hybrid result (merging)

hybrid result (merging)

hybrid result (merging)

hybrid result (merging)

Table 2. Difference (base\tool)

solid base

surface base

wireframe base

hybrid base

solid tool

solid result

surface result

wireframe result

hybrid result

surface tool

surface base (no effect)

surface base (no effect)

hybrid base (no effect)

hybrid base (no effect)

wireframe tool

wireframe base (no effect)

hybrid base (no effect)

wireframe base (no effect)

hybrid base (no effect)

hybrid tool

hybrid base (no effect)

hybrid base (no effect)

hybrid base (no effect)

hybrid base (no effect)

Table 3. Intersection (base « tool)

solid base

surface base

wireframe base

hybrid base

solid tool

solid result

surface result

wireframe result

hybrid result

surface tool

surface result

empty result

empty result

empty result

wireframe tool

wireframe result

empty result

empty result

empty result

hybrid tool

hybrid result

empty result

empty result

empty result

GDL Reference Guide

165

3D Shapes

Table 4. Intersection lines (base « tool)

solid base surface base wireframe base hybrid base
solid tool wireframe result wireframe result empty result wireframe result
surface tool wireframe result empty result empty result empty result
wireframe tool empty result empty result empty result empty result

wireframe result

empty result

empty result

empty result

hybrid tool

Table 5. Sweeping

solid surface wireframe hybrid

hybrid base (no effect)

valid result surface base (no effect) wireframe base (no effect)

Surfaces can be explicitly generated by using the MODEL SURFACE command, or implicitly by leaving out non-neighboring face polygons
from the model. Wireframes are produced either by using the MODEL WIRE statement or by defining objects without face polygons. Hybrid
models can only be generated indirectly by leaving out neighboring face polygons from the model.

In the majority of the cases the required model is solid. GDL bodies appear as shells in group definitions, so in order to achieve fast and reliable
operation, the geometric correctness of the generated shells is a critical issue. Handling degenerated objects loads the GDL engine and causes
the desired operation to take more time to complete. The main rule to be considered regarding the efficient use of GDL group operations
can be summarized as follows: model by conforming to existing physical presence of spatial objects. In practice this can be expressed by the
following guidelines:

* Avoid self-intersecting objects.

* Avoid self-touching objects (apply small gaps).

* Avoid zero-sized portions of objects (apply small thickness).

According to the above, these rules are to be followed for shells (defined by bodies), not for solids (defined by groups). (The solid produced
by the script in the Group construction above is modeled propetly, since the constituent shells touch each other but the shells, themselves,
are geometrically correct.)

GROUP - ENDGROUP

GROUP "name"
[statementl
ENDGROUP

statementn]

GDL Reference Guide 166

3D Shapes

Group definition. All bodies between the cortresponding GROUP - ENDGROUP statements will be part of the "name" group. Groups ate not
actually generated (placed), they can be used in group operations or placed explicitly using the PLACEGROUP command. Group definitions
cannot be nested, but macro calls containing group definitions and PLACEGROUP commands using other groups can be included.

Group names must be unique inside the current script. Transformations, cutplanes outside the group definition have no effect on the group
parts; transformations, cutplanes used inside have no effect on the bodies outside the definition. Group definitions are transparent to attribute
DEFINEs and SETs (pens, materials, fills); attributes defined/set before the definition and those defined/set inside the definition are all
effective.

ADDGROUP

ADDGROUP (g _exprl, g expr2)
ADDGROUP{2} (g exprl, g expr2, edgeColor, materialld, materialColor [
ADDGROUP{3} (g exprl, g expr2, edgeColor, materialld, materialColor [

SUBGROUP

SUBGROUP (g exprl, g expr2)
SUBGROUP{2} (g exprl, g expr2, edgeColor, materialld, materialColor [, operationStatus])
SUBGROUP{3} (g exprl, g expr2, edgeColor, materialld, materialColor [, operationStatus])

ISECTGROUP

ISECTGROUP (g exprl, g _expr2)
ISECTGROUP{2} (g exprl, g expr2, edgeColor, materialld, materialColor [, operationStatus])
ISECTGROUP{3} (g exprl, g expr2, edgeColor, materialld, materialColor [, operationStatus])

operationStatus])
operationStatus])

g_exprl: identifier of the base group.

g_expr2: identifier of the tool group.

edgeColor: the color of the new edge when it differs from 0.

materialId: the material of the new face when it differs from 0.

materialColor: the color of the new face when the materialld is 0 and it differs from 0.

operationStatus: status control of the operation.
operationStatus = j; + 2*J,, where eachj can be 0 or 1.
j1: generated new edges will be invisible.
j2: cut polygons of the result inherit material and texture projection from the corresponding polygons of the tool group.

GDL Reference Guide 167

3D Shapes

ISECTLINES

ISECTLINES (g _exprl, g expr2)

Group operations: addition, subtraction, intersection, intersection lines. The return value is a new group, which can be placed using the
PLACEGROUP command, stored in a vatiable or used as a parameter in another group operation. Group operations can be performed
between previously defined groups or groups result from any other group operation. g_exprl, g_expr2 are group type expressions. Group
type expressions are either group names (string expressions) or group type variables or any combination of these in operations which result in
groups. Note that the operations ADDGROUP, ISECTGROUP and ISECTLINES are symmetric in their parameterization while the order
of parameter matters for SUBGROUP.

PLACEGROUP

PLACEGROUP g expr

Placing a group is the operation in which bodies are actually generated. Cutplanes and transformations are effective, the group expression is
evaluated and the resulting bodies are stored in the 3D data structure.

KILLGROUP

KILLGROUP g expr

Clears the bodies of the specified group from the memory. After a KILLGROUP operation the group becomes empty. The names of killed
groups cannot be reused in the same script. Clearing is executed automatically at the end of the interpretation or when returning from macro
calls. For performance reasons this command should be used when a group is no longer needed.

GDL Reference Guide 168

3D Shapes

Example:

GROUP "box"
BRICK 1, 1, 1
ENDGROUP
GROUP "sphere"
ADDZ 1
SPHERE 0.45
DEL 1
ENDGROUP
GROUP "semisphere"
ELLIPS 0.45, 0.45
ENDGROUP
GROUP "brick"
ADD -0.35, -0.35, 0
BRICK 0.70, 0.70, 0.35
DEL 1
ENDGROUP
! Subtracting the "sphere" from the "box"
result 1=SUBGROUP ("box", "sphere")
! Intersecting the "semisphere" and the "brick"
result 2=ISECTGROUP ("semisphere", "brick")
! Adding the generated bodies
result 3=ADDGROUP (result 1, result 2)
PLACEGROUP result 3
KILLGROUP "box"
KILLGROUP "sphere"
KILLGROUP "semisphere"
KILLGROUP "brick"

SWEEPGROUP
SWEEPGROUP (g _expr, x, y, Zz)
Returns a group that is created by sweeping the group parameter along the given direction. The command works for solid models only.

SWEEPGROUP{2} (g expr, X, y, Z)
The difference between SWEEPGROUP and SWEEPGROUP{2} is that in the former case the actual transformation matrix is applied again
to the direction vector of the sweeping operation with respect to the current coordinate system. (In the case of SWEEPGROUP, the current

transformation is applied to the direction vector twice with respect to the global coordinate system.)

GDL Reference Guide 169

3D Shapes

SWEEPGROUP{3} (g expr, X, y, z, edgeColor, materialld, materialColor, method)
This version adds a new method selection to SWEEPGROUP{2} and works for surface models also.

edgeColor: the color of the new edge when it differs from 0.

materialId: the material of the new face when it differs from 0.

materialColor: the color of the new face when the materialld is 0 and it differs from 0.

method: controls the ending shape of the resulting body.

0: same as SWEEPGROUP{2}, both ends come from the originating body,

1: the start comes from the originating body, the sweep end is flat
SWEEPGROUP{4} (g expr, x, y, z, edgeColor, materialld, materialColor, method, status)
This version adds a new status parameter to SWEEPGROUP{3}.

status: Controls attributes of the result.
status = 2*j,, where each j can be 0 or 1.
j2: Keep per-polygon texture mapping parameters on the sweeped result (see the PGON command for details).

Example:

GROUP "the sphere"
SPHERE 1
ENDGROUP
PLACEGROUP SWEEPGROUP{2} ("the_sphere", 2, 0, 0)
ADDX 5
PLACEGROUP SWEEPGROUP{3} ("the sphere", 2, 0, 0, 4, 0, 4, 1)
del 1

CREATEGROUPWITHMATERIAL
CREATEGROUPWITHMATERIAL (g expr, repl directive, pen, material)
Retutns a group that is created by replacing all pens and/or materials in group g_expt.

GDL Reference Guide 170

3D Shapes

g_expr: group expression identifying the base group.
repl directive:
repl directive = j; + 2*j, + 4*j3 + 8%*Jy4, whereeachjcanbeOor 1.
j1: replace pen,
jo2: replace material,
Ja: make edges invisible.
pen: replacement pen index.

material: replacement material index.

BiNARY 3D
BINARY

BINARY mode [, section, elementID]
Special command to include inline binary objects into a GDL macro. A set of vertices, vectors, edges, polygons, bodies and materials is read
from a special section of the library part file. These are transformed according to the current transformations and merged into the 3D model.
The data contained in the binary section is not editable by the user.
mode: defines pencolor and material attribute definition usage.
0: the current PEN and MATERIAL settings are in effect,
1: the current PEN and MATERIAL settings have no effect. The library part will be shown with the stored colors and material definitions.
Surface appearance is constant,
2: the stored PEN and MATERIAL settings are used, non-defined materials are replaced by current settings,
3: the stored PEN and MATERIAL settings are used, non-defined materials are replaced by the stored default attributes.
section: index of the binary part, from 1 to 16.
0: you can refer simultaneously to all the existing binary parts,
1: Only these sections can be saved from within GDL, BINARY commands without the section argument will also refer to this,
2-16: can be used by third party tools.
elementID: ID of an element of this binary part. This parameter is generated during the import process.
If you open files with a different data structure (e.g., DXF or ZOOM) their 3D description will be converted into binary format.
You can save a library part in binary format from the main Library Part editing window through the Save as... command. If the Save in binary
format checkbox is marked in the Save as... dialog box, the GDL text of the current library part will be replaced with a binary description.

GDL Reference Guide 171

3D Shapes

Hint: Saving the 3D model after a 3D cutaway operation in binary format will save the truncated model. This way, you can create cut shapes.

You can only save your library part in binary format if you have already generated its 3D model.
By replacing the GDL description of your library part with a binary description you can considerably reduce the 3D conversion time of the
item. On the other hand, the binary 3D description is not parametric and takes more disk space than an algorithmic GDL script.

GDL Reference Guide 172

2D Shapes

2D SHAPES

This chapter presents the commands used for generating shapes in 2D from simple forms such as lines and arcs to complex pobygons and splines, and the definition of text
elements in 2D. It also covers the way binary data is handled in 2D and the projection of the shape created by a 3D script into the 2D view, thereby ensuring coberence
between the 3D and 2D appearance of objects. Further commands allow users to place graphic elements into element lists created for calculations.

DRAWING ELEMENTS
HOTSPOT2

HOTSPOT2 x, y [, unID [, paramReference [, flags [, displayParam [, "customDescription"]]]]]
y

(x.y)

X
unID: the unique identifier of the hotspot in the 2D Script. Useful if you have a variable number of hotspots.
paramReference: parameter that can be edited by this hotspot using the graphical hotspot based parameter editing method.

displayParam: parameter to display in the information palette when editing the paramRefrence parameter. Members of arrays can be
passed as well.
customDescription: custom description string of the displayed parameter in the information palette. When using this option,

displayParam must be set as well (use paramReference for default).
See Graphical Editing Using Hotspots for information on using HOTSPOT2.

HOTLINE2

HOTLINE2 x1, yl, x2, y2, unID

Status line definition between two points. Status line is a line which is recognized by the intelligent cursor but it is not visible in itself. Can have
a unique ID for associative dimensioning purpose.

GDL Reference Guide 173

2D Shapes

HOTARC2

HOTARC2 x, vy, r, startangle, endangle, unID

Status arc definition with its centerpoint at (%, y) from the angle startangle to endangle, with a radius of r. Status arc is an arc which is recognized
by the intelligent cursor but it is not visible in itself. Can have a unique ID for associative dimensioning purpose.

LINE2
LINE2 x1, yl, x2, y2
Line definition between two points.

y (x2,y2)

(x1,y1)

RECT2
RECT2 x1, yl, x2, y2
Rectangle definition by two nodes. The two points are on the diagonal of the rectangle, the sides are parallel to current X and Y axes.

y (x2,y2)

(x1,y1)

POLY2

POLY2 n, frame fill, x1, yl, ..., xn, yn

GDL Reference Guide 174

2D Shapes

An open or closed polygon with n nodes.

Restriction of parameters:
n >= 2
n: number of nodes.
x1, yl, ..., xn, yn: coordinates of each nodes.
frame fill:
franTeifill = Jj1 + 2*jp + 4*33,whereeachjcanbeOor 1.
j1: draw contour
Jo: draw fill
j3: close an open polygon

POLY2_

POLY2 n, frame fill, x1, yl, sl, ..., xn, yn, sn

GDL Reference Guide 175

2D Shapes

Similar to the POLY2 command, but any of the edges can be omitted. If si = 0, the edge starting from the (xi,yi) apex will be omitted.
If si = 1, the vertex should be shown. si = -1 is used to define holes directly. You can also define arcs and segments in the polyline
using additional status code values.

Restriction of parameters:
n >= 2
n: number of nodes.
x1, yl, ..., xn, yn: coordinates of each nodes.

frame fill:
frame fill = j; + 2*Jo + 4*j3 + 8*jy + 32%je + 64*Jj7, whereeachjcanbeOor 1.
j1: draw contour,
Jo: draw fill,
j3: close an open polygon,
J4: local fill otrientation,
Je: fillis cut fill (default is drafting fill),
j7: fillis cover fill (only if j6 = 0, default is drafting fill).

si: Status values:
si = j; + 16*js5 + 32*j4, where eachj can be 0 or 1.
j1: nextsegment is visible,
js5: next segment is inner line (if 0, generic line),
Je: nextsegment is contour line (effective only if j5 is not set),
-1: end of a contour.

Default line property for POLY2_ lines is O (generic line), the LINE_PROPERTY command has no effect on POLY2_ edges. Additional status
codes allow you to create segments and arcs in the planar polyline using special constraints.

See the section called “Additional Status Codes” for details.

POLY2_A

POLY2 A n, frame fill, fill pen,
xl, yl, sl, ..., xn, yn, sn

GDL Reference Guide 176

2D Shapes

POLY2_B

POLY2 B n, frame fill,

fill pen, fill background pen,

xl, yl, sl, ..., xn, yn, sn
Advanced versions of the POLY2_ command, with additional parameters: the fill pen and the fill background pen. All other parameters are
similar to those described at the POLY2_ command.

fill pen: (fill pencolor number.

fill background pen: (fill background pencolor number.

Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See the section called “Additional Status Codes” for details.

POLY2_B{2}
POLY2 B{2} n, frame fill,
fill pen, fill background pen,
fillOrigoX, fillOrigoY, fillAngle,
xl, yl, sl, ..., xn, yn, sn
Advanced version of the POLY2_B command where the hatching origin and direction can be defined.

frame fill:
frame fill = j; + 2*Jj, + 4*j3 + 8%jyg + 16*Js + 32*Js + 64*J7, whereeachjcanbeOor 1.
J1: draw contour
Jo: draw fill
j3: close an open polygon
J4: local fill orientation
js: global fill origin (effective only if j4 is set)
je: fillin cut category (distinctive with j7, drafting category if none is set)
j7: fillin cover category (distinctive with j6, drafting category if none is set).
£illOrigoX: X coordinate of the fill origin.
£illOrigoY: Y coordinate of the fill origin.
fillAngle: direction angle of fill.

Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.

See the section called “Additional Status Codes” for details.

GDL Reference Guide 177

2D Shapes

POLY2_B{3}
POLY2 B{3} n, frame fill,
fill pen, fill background pen,
fillOrigoX, fillOrigoy,
mxx, mxy, myx, myy, x1, yl, sl, ..., xn, yn, sn

Advanced version of the POLY2_B command, where the orientation of the fill can be defined using a mattix.

frame fill:
frame fill = j; + 2*Jo + 4*j3 + 8*jy4 + 16*js + 32*%jg + 64*j;7 + 128*7jg, where eachjcan be 0 or 1.
Jj1—-J7: similar as for previous POLY2_ commands,
Jg: use sloped fill.

mxx, mxy, myx, myy: ifj8is set, this matrix defines the orientation of the fill.

Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.

See the section called “Additional Status Codes” for details.

POLY2_B{4}
POLY2 B{4} n, frame fill,
fill pen, fill background pen,
fillOrigoX, fillOrigoy,
nxx, mxy, myx, myy,
gradientInnerRadius,
xl, yl, sl, ..., xn, yn, sn
Advanced version of POLY2_ B{3}, where the inner radius of radial gradient fill can be set.

gradientInnerRadius: inner radius of the gradient in case radial gradient fill is selected for the polygon.

POLY2_B{5}
POLY2 B{5} n, frame fill, fillcategory, distortion flags,
fill pen, fill background pen,
fillOrigoX, fillOrigoy,
mxx, mxy, myx, myy,
gradientInnerRadius,
xl, yl, sl, ..., xn, yn, sn
Advanced version of POLY2_ B{4}, where fill distortion can be controlled in an enhanced way.

frame fill:

GDL Reference Guide 178

2D Shapes

frame fill = j; + 2*Jo + 4*Jj3, whereeachjcanbeOor 1.
j1: draw contour

Jo: draw fill

j3: close an open polygon.

fillcategory:
0: Draft,
1: Cut,
2: Cover.

distortion_flags:
distortion flags = j; + 2*Jo + 4*j3 + 8*j4 + 16%*js + 32*%jg + 64*7j7, where eachjcan be 0 or 1.
The valid value for distortion_flags is between 0 and 127. Don’t use value out of this range.
j1: the fill origin’s X coordinate is the global origin’s X coordinate, meaningful only when j4 is set. The fillOrigo is the origin (0,0) projected
on the line of the (mxx, mxy) vectot,
jo: the fill origin’s Y coordinate is the global origin’s Y coordinate, meaningful only when j4 is set,
j3: create circular distortion using the innerRadius parameter,
Ja: uselocal orientation, use the distortion matrix (mij parameters),
js: (effective for symbol fills only) reset the pattern’s X size to the defined X vector’s length (mxx, mxy),
Je: (effective for symbol fills only) reset the pattern’s Y size to the defined Y vector’s length (myx, myy),
j7: (effective for symbol fills only) keep proportion of symbol fill pattern; effective only if one of j5 and j6 is set.

innerRadius: radius for circular fill distortion; the origin of the base circle will be placed on the Y fill axis in the (0, -innerRadius) position.

ARC2
ARC2 x, y, r, alpha, beta
An arc with its centerpoint at (x, y) from the angle alpha to beta, with a radius of r.

Alpha and beta are in degrees.

GDL Reference Guide 179

2D Shapes

y
/ alpha
(x.y)
X
CIRCLE2
CIRCLE2 x, y, r
A circle with its center at (x, y), with a radius of r.
y
X

SPLINE2
SPLINE2 n, status, x1, yl,

anglel, ..., xn, yn, anglen

GDL Reference Guide

180

2D Shapes

X

Spline, with n control points. The tangent of the spline in the control point (xi, yi) is defined by anglei, the angle with the x axis in degrees.

Restriction of parameters:

n >= 2
si: Status values:
0: default,

1: closed spline; the last and first nodes of the spline will become connected, thus closing the spline,
2: automatically smoothed spline; the angle parameter value of the nodes between the first and the last node is not used when generating
the spline. An internal autosmoothing algorithm is used.

Example 1:

SPLINE2 5, 2,
0, 0, 60,
1, 2, 30,
1.5, 1.5, -30,
3, 4, 45,
4, 3, =45

GDL Reference Guide 181

2D Shapes

Example 2:
n =25
FOR 1 = 1 TO n
SPLINE2 4, O,
0.0, 2.0, 135.0,
-1.0, 1.8, 240.0,
-1.0, 1.0, 290.0,
0.0, 0.0, 45.0
MUL2 -1.0, 1.0
SPLINE2 4, O,
0.0, 2.0, 135.0,
-1.0, 1.8, 240.0,
-1.0, 1.0, 290.0,
0.0, 0.0, 45.0
DEL 1
SPLINE2 4, O,
0.0, 2.0, 100.0,
0.0, 2.5, 0.0,
0.0, 2.4, 270.0,
0.0, 2.0, 270.0
ADD2 2.5, O
NEXT i
SPLINE2A

SPLINE2A n, status, x1, yl, anglel, length previousl, length nextl,

xn, yn, anglen,
length nextn

length previousn,

QOO0

GDL Reference Guide

182

2D Shapes

X

Extension of the SPLINE2 command (Bézier spline), used mainly in automatic 2D script generation because of its complexity.
For more details, see “Lines / Drawing Splines” in the Documentation chapter of the ARCHICAD Help.

si: Status values:
0: default,
1: closed spline; the last and first nodes of the spline will become connected, thus closing the spline,
2: automatically smoothed spline; the angle, length_previous; and length_next; parameter values of the nodes between the first and the
last node are not used when generating the spline. An internal autosmoothing algorithm is used.

xi, yi: control point coordinates.
length previousi, length nexti: tangentlengths for the previous and the next control points.

anglei: tangent direction angle.

GDL Reference Guide 183

2D Shapes

Example:

SPLINE2A 9, 2,
0.0, 0.0, 0.0, 0.0, 0.0,
0.7, 1.5, 15, 0.9, 1.0,
1.9, 0.8, 72, 0.8, 0.3,
1.9, 1.8, 100, 0.3, 0.4,
1.8, 3.1, 85, 0.4, 0.5,
2.4, 4.1, 352, 0.4, 0.4,
3.5, 3.3, 338, 0.4, 0.4,
4.7, 3.7, 36, 0.4, 0.8,
6.0, 4.6, 0, 0.0, 0.0

PICTURE2

PICTURE2 expression, a, b, mask

PICTURE2{2}
PICTURE2{2} expression, a, b, mask
Can be used in 2D similarly to the PICTURE command in 3D. Unlike in 3D, the mask values have no effect on 2D pictures.

A string type expression means a file name, a numerical expression means an index of a picture stored in the library part. A 0 index is a special
value, it refers to the preview pictute of the library part. For PICTURE2{2} mask = 1 means that exact white colored pixels are transparent.

Other pictures can only be stored in library parts when saving the project or selected elements containing pictures as GDL objects.

TEXT ELEMENT
TEXT?2

TEXT2 x, y, expression
The value of the calculated numerical or string type expression is written in the set style at the x, y coordinates.

See also the [SET] STYLE command and the DEFINE STYLE command.

GDL Reference Guide 184

2D Shapes

ArchiCAD

(x.y)

RICHTEXT2

RICHTEXT2 x, y, textblock name

Place a previously defined TEXTBLOCK.

For more details, see the TEXTBI.OCK command.

x, y: X-Y coordinates of the richtext location.

textblock name: the name of a previously defined TEXTBLOCK

BINARY 2D
FRAGMENT?2

FRAGMENT2 fragment index, use current attributes flag
FRAGMENT2 ALL, use current attributes flag

The fragment with the given index is inserted into the 2D Full View with the current transformations. If ALL is specified, all fragments are
inserted.

use_current_attributes_flag: defines whether or not the current attributes will be used.
0: the fragment appears with the color, line type and fill type defined for it,
1: the current settings of the script are used instead of the color, line type and fill type of the fragment.

3D PROJECTIONS IN 2D
PROJECT2

PROJECT2 projection code, angle, method

GDL Reference Guide 185

2D Shapes

PROJECT2{2}
PROJECT2{2} projection code, angle, method [, backgroundColor,

fillOrigoX, fillOrigoY, filldirection]
Creates a projection of the 3D script in the same library part and adds the generated lines to the 2D parametric symbol. The 2nd version
PROJECT2{2}, together with a previous [SET] FILL command, allows the user to control the fill background, origin and direction of
the resulting drawing from the 2D script. The SET FILL 0 shortcut to get an empty fill does not work in this case, you need to reference
an actual empty fill.

projection_code: the type of projection.
3: Top view,

Side view,

Side view 2,

Frontal axonometty,

Isometric axonometry,

Monometric axonometty,

O 00 J o U1 >

¢ Dimetric axonometty,

-3: Bottom view,

-6: Frontal bottom view,

-7 : Isomettic bottom view,
-8: Monometric bottom view,
-9: Dimetric bottom view.

angle: the azimuth angle set in the 3D Projection Settings dialog box.

method: the chosen imaging method. If invalid or none is set, the default is hidden lines (2).
1: wireframe,
2: hidden lines (analytic),
3: shading,
16: addition modifier: draws vectorial hatches (effective only in hidden line and shaded mode),
32: addition modifier: use current attributes instead of attributes from 3D (effective only in shading mode),
64 : addition modifier: local fill orientation (effective only in shading mode),
128: addition modifier: lines are all inner lines (effective only together with 32). Default is generic,
256: addition modifier: lines are all contour lines (effective only together with 32, if 128 is not set). Default is generic,
512: addition modifier: fills are all cut (effective only together with 32). Default is drafting fills,
1024 : addition modifier: fills are all cover (effective only together with 32, if 512 is not set). Default is drafting fills.

GDL Reference Guide 186

2D Shapes

BackgroundColor: background color of the fill.

£illOrigoX: X coordinate of the fill origin.

£illOorigoY: Y coordinate of the fill origin.

filldirection: direction angle of fill.

Note: the [SET] FILL command is effective for PROJECT2{2}

Compatibility note: using PROJECT2 with method bit 32 not set and method bit 3 set (shading), the model being cut with the CUTPOLYA

command without status bit 2 set (generating cut polygons) resulting cut polygon attributes can be different. Cut polygons will be generated
with attributes defined by the SECT_FILL command in the 3D script.

GDL Reference Guide 187

2D Shapes

Example:

2D
PROJECT2 3, 270, 2

LINE TYPE "DASHED"
ARC2 0, 0, A-B/3, 0, E

E = 270
A =1

B =20.2
ROT2 E

ADD2 A-B/3, 0
LINE2 0, 0, -0.05, -0.1
LINE2 0, O, 0.05, -0.1

DEL 2
3D

n =12
E 270
D =10.2
A =1

B =0.2

FOR i=1 TO n
prism 4, D,
-B/3, -B/2,
_B/Sr B/2I
A‘B/Bl B/8l
A-B/3, -B/8
ADDZ D
ROTz E/ (n-1)
NEXT i

DEL n*2

GDL Reference Guide 188

2D Shapes

PROJECT2{3}

PROJECT2{3} projection code, angle, method, parts [, backgroundColor,
fi1llOrigoX, £fillOrigoY, filldirection][[,]
PARAMETERS namel=valuel, ..., namen=valuen]

Creates a projection of the 3D script in the same library part and adds the generated lines to the 2D parametric symbol. The third version,
PROJECT2{3}, adds the possibility to define which patts of the projected model are requited and to control separately the attributes of the
cut and view part, including the line type. You can also generate the projection with actual parameters set in the command.

method: the chosen imaging method. If invalid or none is set, the default is hidden lines (2).
1: wireframe,
2: hidden lines (analytic),
3: shading,
16: addition modifier: draws vectorial hatches (effective only in hidden line and shaded mode),
32: addition modifier: use current attributes instead of attributes from 3D (effective only in shading mode),
64 : addition modifier: local fill orientation (effective only in shading mode),
128: addition modifier: lines are all inner lines (effective only together with 32). Default is generic.
256: addition modifier: lines are all contour lines (effective only together with 32, if 128 is not set). Default is generic.
512: addition modifier: fills are all cut (effective only together with 32). Default is drafting fills.
1024 : addition modifier: fills are all cover (effective only together with 32, if 512 is not set). Default is drafting fills.
2048 : addition modifier: modifiers 16, 32, 64, 128, 256, 512, 1024 and fill attribute parameters are effective only for the view part of the
projection. By default they are effective for all parts.
4096: addition modifier: modifiers 16, 32, 64, 128, 256, 512, 1024 and fill attribute parameters are effective only for the cut part of the
projection. By default they are effective for all parts.
8192 : addition modifier: cut fills are slanted.
16384 : addition modifier: enables transparency for transparent surfaces. Note that transparency in this case means full transparency for
surfaces with transmittance greater than 50, everything else is non-transparent.
Known limitation: lines of the cut part cannot be treated separately, only all lines together can be set to be inner or contour.

parts: defines the parts to generate. The 1+2+4+8+16+32 value means all parts.
parts = j1 + 2*jy + 4*j3 + 8*%j4 + 16*js5 + 32*Jg, where each j can be 0 or 1.
The i1, j2,}3, j4, j5, j6 numbers represent whether the corresponding parts of the projected model are present (1) or omitted (0):
j1: cut polygons (with default fill attributes defined by SECT_FILL) (effective only in shading mode),
j2: cut polygon edges,
j3: view polygons,

GDL Reference Guide 189

2D Shapes

Ja: view polygon edges,
Js: project 3D hotspots as static 2D hotspots,
Je: project 3D hotlines and hotarcs (including related 3D hotspots converted to static 2D hotspots).

PROJECT2{4}

PROJECT2{4} projection code, angle,
useTransparency, statusParts,
numCutplanes,
cutplaneHeightl, ..., cutplaneHeightn,

methodl, partsl,

cutFillIndexl1,

cutFillFgPenl, cutFillBgPenl,

cutFillOrigoX1l, cutFillOrigoYl, cutFillDirectionl,
cutLinePenl, cutLineTypel,

projectedFillIndexl1,

projectedFillFgPenl, projectedFillBgPenl,
projectedFillOrigoX1l, projectedFillOrigoYl,
projectedFillDirectionl,

projectedLinePenl, projectedLineTypel,

method (numCutplanes+l)), parts (numCutplanes+l),

cutFillIndex (numCutplanes+1l),

cutFillFgPen (numCutplanes+1l), cutFillBgPen (numCutplanes+1),
cutFillOrigoX (numCutplanes+1l), cutFillOrigoY (numCutplanes+1),
cutFillDirection (numCutplanes+l1),

cutLinePen (numCutplanes+l), cutLineType (numCutplanes+1),
projectedFillIndex (numCutplanes+1),

projectedFillFgPen (numCutplanes+l), projectedFillBgPen (numCutplanes+l),
projectedFillOrigoX (numCutplanes+1l), projectedFillOrigoY (numCutplanes+1),
projectedFillDirection (numCutplanes+1),

projectedLinePen (numCutplanes+l), projectedLineType (numCutplanes+1)

Compatibility: introduced in ARCHICAD 20.

Creates a projection of the 3D script in the same library part and adds the generated lines to the 2D parametric symbol. The fourth version,
PROJECT2{4}, adds the possibility to define multiple cutting planes parallel to the X-Y plane, and to control the attributes of the cut and
projected parts of the slices, including the line type, pens and fills. The number of cutplanes can be zero, creating exactly one uncut slice
(numCutplanes+1).

GDL Reference Guide 190

2D Shapes

useTransparency: can be 0 (no transparency) or positive integer (1: transparency enabled).

statusParts: defines the status parts to generate (hotlines, hotspots, hotarcs). The 1+2 value means all parts. Setting is applied for all slices.
statusParts = j; + 2*Jjp, where eachj can be 0 or 1.

The j1, j2 numbers represent whether the corresponding status parts of the projected model are present (1) or omitted (0):

j1: project 3D hotspots as static 2D hotspots,
j2: project 3D hotlines and hotarcs (including related 3D hotspots converted to static 2D hotspots).

numCutplanes: the number of defined cutplanes. Can be zero, but preferably more.

cutplaneHeighti: the position of each individually defined cutplane. Measured as length perpendicularly from the X-Y plane of the
object.

method: the chosen imaging method. If invalid or none is set, the default is hidden lines (2).

the current slice is not part of the projection,

: w1refrarne,

hidden lines (analytic),

shading,

hidden lines with polygon: the polygon does not eliminate any polygon or line belonging to parts created with shading method, but
w111 cover/eliminate polygons and lines belonging to other wireframe/hidden line patts. Set it to Air Space for best result. Such exploded
polygons will behave in 2D according to slice order (will cover, but not eliminate shaded parts).

16: addition modifier: draws vectorial hatches (effective only in hidden line modes and shaded mode),

32: addition modifier: use current attributes instead of attributes from 3D (effective only in shading mode and hidden line with polygon
mode),

64 : addition modifier: local fill orientation (effective only in shading mode and hidden line with polygon mode),

128: addition modifier: lines are all inner lines (effective only together with 32). Default is generic.

256: addition modifier: lines are all contour lines (effective only together with 32, if 128 is not set). Default is generic.

512: addition modifier: fills are all cut (effective only together with 32). Default is drafting fills.

1024 : addition modifier: fills are all cover (effective only together with 32, if 512 is not set). Default is drafting fills.

2048 : addition modifier: modifiers 16, 32, 64, 128, 256, 512, 1024 and fill attribute parameters are effective only for the view part of the
projection. By default they are effective for all parts.

4096: addition modifier: modifiers 16, 32, 64, 128, 256, 512, 1024 and fill attribute parameters are effective only for the cut part of the
projection. By default they are effective for all parts.

8192: addition modifier: cut fills are slanted.

FBUJNHO

GDL Reference Guide 191

2D Shapes

16384 : addition modifier: enables transparency for transparent surfaces. Note that transparency in this case means full transparency for
surfaces with transmittance greater than 50, everything else is non-transparent.

partsi: defines the parts to generate. The 1+2+4+8+064 value means all parts.
partsi = j1 + 2*j, + 4*j3 + 8*%jg + 64*7j7, where eachjcanbe 0 or 1.
The i1, j2, 3, j4, j7 numbers represent whether the corresponding parts of the projected model are present (1) or omitted (0):
j1: cut polygons (with default fill attributes defined by SECT_FILL) (effective only in shading mode),
jo2: cut polygon edges,
j3: view polygons,
Ja: view polygon edges,
j7: project pointclouds.
cutFillIndexi: Mfill typeindex of the cut part of the current slice.
cutFillFgPeni: (fill pen of the cut part of the current slice.
cutFillBgPeni: (fill background pen of the cut part of the current slice.
cutFillOrigoXi: X coordinate of the cut fill origin of the current slice.
cutFillOrigoYi: Y coordinate of the cut fill origin of the current slice.
cutFillDirectioni: direction angle of the cut fill of the current slice.
cutLinePeni: pen index of cut lines of the current slice.
cutLineTypei: line type of cut lines of the current slice.
projectedFillIndexi: fill type index of the projected part of the current slice.
projectedFillFgPeni: fill pen of the projected part of the current slice.
projectedFillBgPeni: fill background pen of the projected part of the current slice.
projectedFillOrigoXi: X coordinate of the projected fill origin of the current slice.
projectedFillOrigoY¥Yi: Y coordinate of the projected fill origin of the current slice.
projectedFillDirectioni: direction angle of the projected fill of the current slice.
projectedLinePeni: pen index of projected lines of the current slice.

projectedLineTypei: line type of projected lines of the current slice.

GDL Reference Guide 192

2D Shapes

DRAWINGS IN THE LIST

These commands only take effect when a list of elements is created.

When the library part is a special property type library part and is in some way associated to a library part (Object, Door, Window or Light)
placed on the floor plan, including the following commands in its 2D script will refer to the 2D and 3D part of that library part. This is a virtual
reference that is resolved during the listing process, using the 2D or 3D script of the currently listed element.

DRAWING2
DRAWING2 [expression]

Depending on the value of the expression, creates a drawing of the library part (expression = 0, default) or the label of the element (expression
= 1) associated with the Property Object containing this command.

DRAWING3

DRAWING3 projection code, angle, method

DRAWING3{2}

DRAWING3{2} projection code, angle, method [, backgroundColor,
fillOrigoX, fillOrigoY, filldirection]

Similarly to PROJECT?2, creates a projection of the 3D script of the library part associated with the property library part containing this
command. All parameters are similar to those of PROJECT2 and PROJECT2{2}.
method: New method flags in DRAWING3{2}

3: shading,

32: use current attributes instead of attributes from 3D,

64 : local fill orientation.

DRAWING3{3}

DRAWING3{3} projection code, angle, method, parts [, backgroundColor,
fi11lOrigoX, fillOrigoY, filldirection][[,]
PARAMETERS namel=valuel, ..., namen=valuen]

Similarly to PROJECT?2, creates a projection of the 3D script of the library part associated with the property library part containing this
command. All parameters are similar to those of PROJECT2, PROJECT2{2} and PROJECT2{3}.
method: New method flags in DRAWING3{3}
2048: addition modifier: modifiers 16, 32, 64, 128, 256, 512, 1024 and fill attribute parameters are effective only for the view part of the
projection. By default they are effective for all parts,

GDL Reference Guide 193

2D Shapes

4096: addition modifier: modifiers 16, 32, 64, 128, 256, 512, 1024 and fill attribute parameters are effective only for the cut part of the
projection. By default they are effective for all parts,

8192: addition modifier: cut fills are slanted.
16384 : addition modifier: enables transparency for transparent surfaces. Note that transparency in this case means full transparency for

surfaces with transmittance greater than 50, everything else is non-transparent.

GDL Reference Guide 194

Graphical Editing Using Hotspots

GRAPHICAL EDITING USING HOTSPOTS

Hotspot-based interactive graphical editing of length and angle type GDL parameters.

HOTSPOT x, y, z [, unID [, paramReference [, flags [, displayParam [, "customDescription"]]]]]
HOTSPOT2 x, y [, unID [, paramReference [, flags [, displayParam [, "customDescription"]]]]]
unID: unique identifier, which must be unique among the hotspots defined in the library part.

paramReference: parameter that can be edited by this hotspot using the graphical hotspot based parameter editing method.

displayParam: parameter to display in the information palette when editing the paramRefrence parameter. Members of arrays can be
passed as well.

customDescription: custom description string for the displayed parameter in the information palette. When using this option,
displayParam must be set as well (use paramReference for default). The value set for the moving type hotspot will be displayed only. It is
recommended to set the same description for all moving hotspots having the same base hotspot.

Examples of valid arguments:

D, Arr[5], Arr([2*I+3][D+1], etc.

flags: hotspot’s type + hotspot’s attribute:

type:
1: length type editing, base hotspot,

length type editing, moving hotspot,

length type editing, reference hotspot (always hidden),

angle type editing, base hotspot,

angle type editing, moving hotspot,

angle type editing, center of angle (always hidden),

angle type editing, reference hotspot (always hidden).

~ o U W N

attribute: Can be zero or:
attribute = 128*jg + 256*jg + 512*j19 + 1024*j1;1, where each jcanbe O or 1.
jg: hide hotspot (meaningful for types: 1,2,4,5),
Jo: editable base hotspot (for types: 1,4),
Jj10: reverse the angle in 2D (for type 0),
Jj11: use paramReference value as meters in paper space.

GDL Reference Guide 195

Graphical Editing Using Hotspots

To edit a length type parameter, three hotspots must be defined with types 1, 2 and 3. The positive direction of the editing line is given by
the vector from the reference hotspot to the base hotspot. The moving hotspot must be placed along this line at a distance determined by the
associated parameter’s value, measured from the base hotspot.

Reference (3) Base (1) Moving (2)
o o o——
-1 0 X

To edit an angle type parameter, in 3D four hotspots must be defined with types 4, 5, 6 and 7. The plane of the angle is perpendicular to the
vector that goes from the center hotspot to the reference hotspot. The positive direction in measuring the angle is counter-clockwise if we look
at the plane from the reference hotspot. In 2D the plane is already given, so the reference hotspot is ignored, and the positive direction of
measuring the angle is by default counter-clockwise. This can be changed to clockwise by setting the 512 attribute flag for the center hotspot
(type 6). To be consistent, the vectors from the center hotspot to the moving and the base hotspots must be perpendicular to the vector from
the center to the reference hotspot. The moving hotspot must be placed at an angle determined by the associated parameter measured from
the base hotspot around the center hotspot.

GDL Reference Guide 196

Graphical Editing Using Hotspots

Moving (5)

alpha

Center (6) Base (4)

If several sets of hotspots are defined to edit the same parameter, hotspots are grouped together in the order of the execution of the hotspot
commands. If the editable attribute is set for a base hotspot, the user can also edit the parameter by dragging the base hotspot. Since the base
hotspot is supposed to be fixed in the object’s coordinate frame (i.e. its location must be independent of the parameter that is attached to it),
the whole object is dragged or rotated along with the base point. (As the parameter’s value is changing, the moving hotspot will not change
its location.)

Two length type sets of hotspots can be combined to allow editing of two parameters with only one dragging. If two are combined, the motion
of the hotspot is no longer constrained to a line but to the plane determined by the two lines of each set of length editing hotspots. In 3D, the
combination of three sets of length editing hotspots allows the hotspot to be placed anywhere in space. The two lines must not be parallel to
each other, and the three lines must not be on the same plane. A combined parameter editing operation is started if, at the location of the picked
point, there are two editable hotspots (moving or editable base) with different associated parameters. If parameters are designed for combined
editing, the base and reference hotspots are not fixed in the object’s coordinate frame, but must move as the other parameter’s value changes.

See illustration and example 2.

GDL Reference Guide 197

Graphical Editing Using Hotspots

Example 1: Angle editing in 2D

LINE2 0, O, A, O

LINE2 0, 0, A*COS(angle), A*SIN(angle)

ARC2 0, 0, 0.75*A, 0, angle

HOTSPOT2 0O, 0, 1, angle, 6

HOTSPOT2 0.9*A, 0, 2, angle, 4

HOTSPOT2 0.9*A*COS (angle), 0.9*A*SIN (angle),
angle, 5

Example 2: Combined length type editing with 2 parameters in 2D

3,

Base,
Base,
user drags the hotspot here
Ref; C Moving,
Movin
Moving,, 9o
. o
Moving,
D
origin C;I<%\\\\\\\\v origin (§U<(_
(C=0, D=0) Ref, Base, (C=0,D=0) Refy Base,
GDL Reference Guide

198

Graphical Editing Using Hotspots

! sideX, sideY parameters

RECT2 0, 0, A, B

RECT2 0, 0, sideX, sideY

HOTSPOT2 sideX, 0, 1, sidey, 1
HOTSPOT2 sideX, -0.1, 2, sideY, 3
HOTSPOT2 sideX, sideY, 3, sideY, 2
HOTSPOT2 0, sideY, 4, sideX, 1
HOTSPOT2 -0.1, sideY, 5, sideX, 3
HOTSPOT2 sideX, sideY, 6, sideX, 2

Example 3: Simple length type editing with 1 parameter

GDL Reference Guide 199

Graphical Editing Using Hotspots

12D SCRIPT:

HOTSPOT2 -1, 0, 1

HOTSPOT2 1, 0, 2

HOTSPOTZ2 0, 0, 3, corner y, 1+128
HOTSPOTZ2 O, -1, 4, corner y, 3
HOTSpPOT2 0, corner y, 5, corner y, 2
LINE2 -1, 0, 1, O

LINE2 -1, 0, 0O, corner y

LINE2 1, 0, 0, corner y

3D SCRIPT:
HOTSpPOT -1, O, O, 1
HOTSPOT -1, O, 0.5, 2
HOTSPOT 1, 0, 0, 3
HOTSpOT 1, 0, 0.5, 4
HorseoOT O, 0, 0, 5, corner y, 1+128
HorseoT 0, -1, 0, 6, corner y, 3
HOTSPOT 0, corner y, O, 7, corner y, 2
HorseoT 0, 0, 0.5, 8, corner y, 1+128
HorseoT 0, -1, 0.5, 9, corner y, 3
HOTSPOT 0, corner y, 0.5, 10, corner y, 2
PRISM 4, 0.5,

-1, 0, 15,

1, 0, 15,

0, corner y, 15,

-1, 0, -1~

GDL Reference Guide 200

Graphical Editing Using Hotspots

Example 4: Combined length type editing with 2 parameters:

12D SCRIPT:

HOTSPOT2 -1, 0, 1

HOTSPOT2 1, 0, 2

HOTSPOTZ2 corner x, 0, 3, corner y, 1+128
HOTSPOT2 corner x, -1, 4, corner y, 3
HOTSPOT2 corner x, corner y, 5, corner y, 2
HOTSPOTZ2 0, corner_y, 6, corner x, 1+128
HOTSPOTZ -1, corner y, 7, corner x, 3
HOTSPOT2 corner x, corner y, 8, corner x, 2
LINE2 -1, 0, 1, O

LINEZ2 -1, O, corner x, corner y

LINE2 1, 0, corner x, corner_ y

GDL Reference Guide 201

Graphical Editing Using Hotspots

3D SCRIPT:
HOTSPOT -1, 0, 0, 1
HOTSPOT -1, 0, O
HOTSPOT 1, 0, O,
HOTSpOT 1, 0O, 0.5, 4
HOTSPOT corner x, 0, 0, 5, corner y, 1+128
HOTSPOT corner x, -1, 0, 6, corner y, 3
HOTSPOT corner_ x, corner_ y, 0, 7, corner y, 2
HOTSPOT 0, corner y, 0, 8, corner x, 1+128
HOTSPOT -1, corner_y, 0, 9, corner x, 3
HOTSPOT corner_ x, corner y, 0, 10, corner x, 2
HOTSPOT corner x, 0, 0.5, 11, corner y, 1+128
HOTSPOT corner x, -1, 0.5, 12, corner y, 3
HOTSPOT corner x, corner_ y, 0.5, 13, corner y, 2
HOTSPOT 0, corner y, 0.5, 14, corner x, 1+128
HOTSPOT -1, corner_y, 0.5, 15, corner x, 3
HOTSPOT corner x, corner y, 0.5, 16, corner x, 2
PRISM 4, 0.5, - -

-1, 0, 15,

1, 0, 15,

corner X, corner y, 15,

-1, 0, -1

GDL Reference Guide 202

Status Codes

STATUS CODES

Status codes introduced in the following pages allow users to create segments and arcs in planar polylines using special constraints.

Planar polylines with status codes at nodes are the basis of many GDL elements: POLY2 , POLY2 A, POLY2 B, POLY2 B{2},
POLY2 B{3}, POLY2 B{4}, POLY2 B{5}, POLY , PLANE , PRISM , CPRISM , BPRISM , FPRISM , HPRISM , SPRISM ,
SLAB ,CSLAB , CROOF , EXTRUDE, PYRAMID, REVOLVE, SWEEP, TUBE, TUBEA

Status codes allow you:

to control the visibility of planar polyline edges
to define holes in the polyline

to control the visibility of side edges and surfaces
to create segments and arcs in the polyline

STATUS CODE SYNTAX

si: The si number is a binary integer (between 0 and 127) or -1.

si = j1 + 2*jp + 4*j3 + 8*j4 + 64*j7 [+ a_code] ,whereeachjcanbeOor 1.

The j1, j2, j3, j4 numbers represent whether the vertices and the sides are present (1) or omitted (0):

j1: lower horizontal edge,

jo: vertical edge,

j3: upper horizontal edge,

Jq: side face,

j7: special additional status value effective only when j2=1 and controls the viewpoint dependent visibility of the current vertical edge,
a_code: additional status code (optional), which allows you to create segments and arcs in the polyline,

j2=0: the vertical edge is always invisible

j2=1 and 3j7=1: the vertical edge is only visible when it is a contour observed from the current direction of view
j2=1 and 3j7=0: the vertical edge is always visible

Possible status values (the heavy lines denote visible edges):

GDL Reference Guide 203

Status Codes

3
o
Q
®

ible su

<.
]
=2

invisible surface

o] 8
] 0 Wz
2 N NN 77/
N nw W22
N N7/,
| wpzz2ZZ
o[1 w22
L sBEZZ

si=-1 is used to define holes directly into the prism. It marks the end of the contour and the beginning of a hole inside of the contour. It
is also used to indicate the end of one hole’s contour and the beginning of another. Coordinates before that value must be identical to the
coordinates of the first point of the contour/hole. If you have used the -1 mask value, the last mask value in the parameter list must be -1,
marking the end of the last hole.

The holes must be disjoint and internal intersections are forbidden in the polygon for a cotrect shading/rendering result.

ADDITIONAL STATUS CODES

The following additional status codes allow you to create segments and arcs in the polyline using special constraints. They refer to the next
segment or arc. Original status code(s) are only effective where they are specified (a "+s" is included after the additional code).

GDL Reference Guide 204

Status Codes

Note

Resolution of arcs is controlled by directives described in the section called “Directives for 3D and 2D Scripts”. In case of the POLY2_
command, if the resolution is greater than 8, it generates real arcs; otherwise all generated arcs will be segmented.

Previous part of the polyline: current position and tangent is defined

Segment by absolute endpoint

X, Yy, S
where 0 <s < 100

X,y

Segment by relative endpoint
dx, dy, 100+s,

GDL Reference Guide 205

Status Codes

whete 0 <s < 100

dy
dx
100
Segment by length and direction
1, a, 200+s,
where 0 <'s <100
|
a
200

Tangential segment by length
1, 0, 300+s,
where 0 <'s <100

GDL Reference Guide 206

Status Codes

Set start point
x1l, vyl, 600,

Close polyline
0, 0, 700,

Set tangent
ex, ey, 800,

300

[m]

(x1,y1)

700

600

GDL Reference Guide

207

Status Codes

ey

800

Set centerpoint
x0, y0, 900,

a
x0,y0

900

Tangential arc to endpoint
%, y, 1000+s,
where 0 <s <100

GDL Reference Guide 208

Status Codes

1000

Tangential arc by radius and angle
r, a, 2000+s,
where 0 <'s < 100

Arc using centerpoint and point on the final radius
%, vy, 3000+s,
where 0 <'s < 100

GDL Reference Guide

209

Status Codes

3000

Arc using centerpoint and angle
0, a, 4000+s,
where 0 <'s < 100

Full circle using centerpoint and radius
r, 360, 4000+s,
where 0 <'s <100

GDL Reference Guide 210

Status Codes

4000

In this case the s status refers to the whole circle.

All angle values are in degrees. Omitted coordinates marked by 0 (for codes 300, 700, 4000) can have any value.

Example 1:

O

GDL Reference Guide 211

Status Codes

EXTRUDE 21, 0, 0, 3, 1+2+4+16+32,

o, 0, 0,

7, 0, 0,

7, 3, 1,

6, 3, 1000, ! tangential arc to endpoint

5, 3, 1001, ! tangential arc to endpoint

1, 90, 2000, ! tangential arc by radius and angle

2, 3, 1001, ! tangential arc to endpoint

1, 3, 900, ! set centerpoint

1, 2, 3000, ! arc using startpoint, centerpoint and point on final radius
1, 2.5, 900, ! set centerpoint

0, -180, 4001, ! arc using start point, centerpoint and angle
1, 5, 1000, 'tangential arc to endpoint

-1, 0, 100, ! segment by (dx, dy)

2, 225, 200, ! segment by (len, angle)

-1, 0, 800, ! set tangent

-1, 0, 1000, ! tangential arc to endpoint

0, 0, -1, ! end of contour

1, 1, 9OO ! set centerpoint

0.5, 360, 4000 ! full circle by centerpoint and radius
3.5, 1.5, 900, ! set centerpoint

1, 360, 4001 ! full circle by centerpoint and radius

GDL Reference Guide 212

Status Codes

Example 2:

EXTRUDE 2+5+10+10+2, 0, 0, 3, 1+2+4+16+32,

0, 0, 900,
3, 360, 4001,
2.5, -1, O,
2.5, 1, 0,
1.5, 1, 1,
1.5, -1, 1001,
2.5, -1, -1,
0, 2.5, 600,
0, -1, 800,
1, 1.5, 1001,
-1, 0, 800,
0, 0.5, 1001,
0, 1, 800,
-1, 1.5, 1001,
1, 0, 800,
0, 2.5, 1001,
0, 2.5, 700,
-1.5, 0, 900,
-2.5, 0, 600,
-2.5, 1, 3000,
-2.5, 1, 0,
-1.5, 1, 0,
-1.5, -1, 1001,
-2.5, -1, O,
SQR(2)-1, 45, 200,
-2.5, 0, 3000,
-2.5, 0, 700,
0, -1.5, 900,

GDL Reference Guide 213

Status Codes

Example 3:

Il

EXTRUDE 3, 1, 1, 3, 1+2+4+16+32,
, 0, 900,

, 360, 4001,

, 360, 4000

N wOoO

Example 4:

fanrat

GDL Reference Guide 214

Status Codes

ROTY-90
REVOLVE 9, 180, 16+32,
7, 1, 0,
6/ ll OI
5.5, 2, 0O,
5, 1, 0,
4/ ll OI
3, 1, 900, ! set centerpoint
0, 180, 4001, ! arc using startpoint, centerpoint and angle
2, 1, O,
1, 1, 0

GDL Reference Guide 215

Attributes

ATTRIBUTES

In the first part of this chapter, directives influencing the interpretation of GDL statements are presented. Directives may define the smoothness
used for cylindrical elements, representation mode in the 3D view or the assignment of an attribute (color, material, text style, etc.) for the
subsequent shapes. Inline attribute definition is covered in the second part. This feature allows you to assign to your objects customized materials,
textures, fill patterns, line types and text styles that are not present in the current attribute set of your project.

DIRECTIVES

The influence of directives on the interpretation of the subsequent GDL statements remains in effect until the next directive or the end of the
script. Called scripts inherit the current settings: the changes have local influence. Returning from the script resets the settings as they were
before the macro call.

Directives for 3D and 2D Scripts
LET

[LET] varnam = n

Value assignment. The LET directive is optional. The variable will store the evaluated value of n.

RADIUS

RADIUS radius _min, radius_max

Sets smoothness for cylindrical elements and arcs in polylines.

A circle with a radius of r is represented:

* if r < radius_min, by a hexagon,

* if r >= radius_max, by a 36-edged polygon,

* if radius_min < r < radius_max, by a polygon of (6+30*(t-radius_min)/(radius_max-radius_min)) edges.
Arc conversion is proportional to this.

After a RADIUS statement, all previous RESOL and TOLER statements lose their effect.

Restriction of parameters:

r min <= r max

GDL Reference Guide 216

Attributes

Example:
RADIUS 1.1, 1.15 RADIUS 0.9, 1.15
CYLIND 3.0, 1.0 CYLIND 3.0, 1.0
- D
N
A __
RESOL
RESOL n

Sets smoothness for cylindrical elements and arcs in polylines. Circles are converted to regular polygons having n sides.
Arc conversion is proportional to this.
After a RESOL statement, any previous RADIUS and TOLER statements lose their effect.

Restriction of parameters:

n >= 3
Defant:
RESOL 36

GDL Reference Guide 217

Attributes

Example:
RESOL 5 RESOL 36
CYLIND 3.0, 1.0 CYLIND 3.0, 1.0
Y D
N
T~ N~
TOLER
TOLER d

Sets smoothness for cylindrical elements and arcs in polylines. The error of the arc approximation (i.e., the greatest distance between the
theoretical arc and the generated chord) will be smaller than d.

After a TOLER statement, any previous RADIUS and RESOL statements lose their effect.

GDL Reference Guide 218

Attributes

Example:
TOLER 0.1 TOLER 0.01
CYLIND 3.0, 1.0 CYLIND 3.0, 1.0
- >
N
w _/
Note

The RADIUS, RESOL and TOLER directives set smoothness for cylindrical 3D elements (CIRCLE, ARC, CYLIND, SPHERE,
ELLIPS, CONE, ARMC, ARME, ELBOW, REVOLVE) and arcs in 2D polylines using curved edges.

See the section called “Additional Status Codes”.

PEN
PEN n
Sets the colot.
Restriction of parameters:
0 < n <= 255
Defanlt:
PEN 1
if there is no PEN statement in the script.

(For library parts, default values come from the library part’s settings. If the script refers to a non-existing index, PEN 1 becomes the default
setting,)

GDL Reference Guide 219

Attributes

LINE_PROPERTY
LINE PROPERTY expr
Defines the property for all subsequently generated lines in the 2D script (RECT2, LINE2, ARC2, CIRCLE2, SPLINE2, SPLINE2A,
POLY2, FRAGMENT2 commands) until the next LINE_PROPERTY statement. Default value is generic.
expr: possible values:
0: all lines are generic lines,
1: alllines are inner,
2: alllines are contour.

[SET] STYLE

[SET] STYLE name_ string
[SET] STYLE index

All the texts generated afterwards will use that style until the next SET STYLE statement.

The index is a constant referring to a style stack in the internal data structure (negative indices mean indices in the data structure of inline
materials (previously defined in the GDL script)). This stack is modified during GDL analysis and can also be modified from within the program.
The use of the index instead of the style name is only recommended with the prior use of the IND function.

Default:
SET STYLE O
(application font, size 5 mm, anchor = 1, normal face) if there is no SET STYLE statement in the script.

Directives Used in 3D Scripts Only

MODEL

MODEL WIRE
MODEL SURFACE
MODEL SOLID

Sets the representation mode in the current script.
MODEL WIRE: only wireframe, no surfaces or volumes. Objects are transparent.

MODEL SURFACE, MODEL SOLID: The generation of the section surfaces is based on the relation of the boundary surfaces, so that both
methods generate the same 3D internal data structure. Objects are opaque.

The only distinction can be seen after cutting away a part of the body:
MODEL SURFACE: the inside of bodies will be visible,

GDL Reference Guide 220

Attributes

MODEL SOLID: new surfaces may appeat.
Defanit:
MODEL SOLID

Excample: To illustrate the three modeling methods, consider the following three blocks:

MODEL WIRE
BLOCK 3,2,1
ADDY 4

MODEL SURFACE
BLOCK 3,2,1
ADDY 4

MODEL SOLID
BLOCK 3,2,1

After cutting them with a plane:

PN

[SET] MATERIAL

[SET] MATERIAL name string
[SET] MATERIAL index

All the surfaces generated afterwards will represent that material until the next MATERIAL statement. Surfaces in the BPRISM , CPRISM ,
FPRISM , HPRISM , SPRISM , CSLAB , CWALIL , BWALL, , XWALL , CROOF , MASS, bodies are exceptions to this rule.

The index is a constant referring to a material stack in the internal data structure (negative indices mean indices in the data structure of inline
materials (previously defined in the GDL script)). This stack is modified during GDL analysis and can also be modified from within the program.
The use of the index instead of the material name is only recommended with the prior use of the IND function.

index 0 has a special meaning: surfaces use the color of the current pen and they have a matte appearance.

Defautt:

MATERIAL O

if there is no MATERIAL statement in the script.

GDL Reference Guide 221

Attributes

(For Library parts, default values are read from the Library part’s settings. If the script refers to a non-existing index, MATERIAL 0 becomes
the default setting.)

SECT_FILL

SECT_FILL fill, fill background pen,
fill pen, contour pen

or

SECT_ATTRS

SECT_ATTRS fill, fill background pen,
fill pen, contour pen [, line type]

Defines the attributes used for the cut part of the 3D elements in the Section/Elevation window and the PROJECT2{3} command (for
compatibility reasons previous versions of the PROJECT2 command are not affected).

£ill: fill name or index number.

£fill background pen: (fill background pencolor number.
f£fill pen: (fill pencolor number.

contour_pen: fill contour pencolor number.

line_type: line type of polygon edges.

SHADOW

SHADOW casting [, catching]
Controls the shadow casting of the elements in PhotoRendering and in vectorial shadow casting;

casting: ON, AUTO or OFF
ON: all the subsequent elements will cast shadows in all circumstances,
OFF: none of the subsequent elements will cast shadows in any circumstance,
AUTO: shadow casting will be determined automatically

Setting SHADOW OFF for hidden parts will spare memory space and processing time.
Setting SHADOW ON ensures that even tiny details will cast shadows.
catching: ON or OFF
This optional parameter controls the appearance of shadows (from other bodies) on surfaces.
If shadow casting isn't specified, the default will be AUTO.

GDL Reference Guide 222

Attributes

Example:

SHADOW OFF
! Yy

horizontal surface
PRISM 4, 0.2,
14 OI
14

14
4

[@Neo N Ne)
oo O

4
4

ADDX 0.5
ADDY 2.5 N

BRICK 1, 1, 1
ADDX 2

SHADOW ON
BRICK 1, 1, 2
ADDX 2

SHADOW OFF
BRICK 1, 1, 3

DEL 4

Directives Used in 2D Scripts Only
DRAWINDEX

DRAWINDEX number
Defines the drawing order of 2D Script elements. Elements with a smaller drawindex will be drawn first.

Restriction of parameters:
0 < number <= 50
(In the current version of GDL only the 10, 20, 30, 40 and 50 DRAWINDEX values are valid. Other values will be rounded to these.)
If no DRAWINDEX directive is present, the default drawing order is the following:
1 Figures
2 Fills

3 Lines

GDL Reference Guide 223

Attributes

4 Text elements

[SET] FILL

[SET] FILL name string
[SET] FILL index

All the 2D polygons generated afterwards will represent that fill until the next SET FILL statement.

The index is a constant referring to a fill stack in the internal data structure. This stack is modified during GDL analysis and can also be modified
from within the program. The use of the index instead of the fill name is only recommended with the prior use of the IND function.

Default:

SET FILL O

i.e., empty fill, if there is no SET FILL statement in the script.

[SET] LINE_TYPE

[SET] LINE TYPE name string
[SET] LINE TYPE index

All the 2D lines generated afterwards will represent that line type (in lines, arcs, polylines) until the next SET LINE_TYPE statement. The
index is a constant that refers to a line type stack in the internal data structure. This stack is modified during GDL analysis and can also be
modified from the program. The use of the index instead of the line type name is only recommended with the prior use of the IND function.
Default:

SET LINE TYPE 1

ie., solid line, if there is no SET LINE_TYPE statement in the script.

INLINE ATTRIBUTE DEFINITION

Attributes in can be created using the material, fill and line type dialog boxes. These floor plan attributes can be referenced from any GDL

script. Attributes can also be defined in GDL scripts. There are two different cases:

* Attribute definition in the MASTER_GDL script. The MASTER_GDL script is interpreted when the library that contains it is loaded in the
memory. The MASTER_GDL attributes are merged into the floor plan attributes; attributes with the same names are not replaced. Once
the MASTER_GDL is loaded, the attributes defined in it can be referenced from any script.

* Attribute definition in library parts. The materials and textures defined this way can be used in the script and its second generation scripts.
Fills and line types defined and used in the 2D script have the same behavior as if they were defined in the MASTER_GDL script.

The Check GDL Script command in the script window helps to verify whether the material, fill, line type ot style parameters are correct.

GDL Reference Guide 224

Attributes

When a material, fill, line type or style is different in the 3D interpretation of the library part from the intended one, but there is no error
message, this probably means that one or more of the parameter values are incorrect. The Check GDL Scripts command will help you with
detailed messages to find these parameters.

Materials
DEFINE MATERIAL

DEFINE MATERIAL name type,
surface red, surface green, surface blue
[, ambient ce, diffuse ce, specular ce, transparent ce,
shining, transparency attenuation
[, specular red, specular green, specular blue,
emission red, emission green, emission blue, emission att]]
[, £fill index [, fillcolor index, texture index]] B

Note: This command can contain additional data definition.
See the section called “Additional Data” for details.

Any GDL script can include material definitions prior to the first reference to that material name. This material can only be used for 3D
elements in its own script and its second generation scripts.

name: name of the material.

type: type of the material. The actual number (n) of parameters that define the material is different, depending on the type. The meaning
of the parameters and their limits are explained in the examples’ comments.
0: general definition, n=16,
1: simple definition, n=9 (extra parameters are constants or calculated from given values),
2-7: predefined material types, n=3. The three values are the RGB components of the surface color. Other parameters are constants
or calculated from the color.
2: matte,
3: metal,
4: plastic,
5: glass,
6: glowing,
7: constant,
10: general definition with fill parameter, n=17,
11: simple definition with fill parameter, n=10,

GDL Reference Guide 225

Attributes

12-17: predefined material types with fill parameter, n=4,

20: general definition with fill, color index of fill and index of texture parameters, n=19,
21: simple definition with fill, color index of fill and index of texture parameters, n=12,

22-277: predefined material types with fill, color index of fill and index of texture parameters, n=0.

20-27:

Example 1: Materials with solid colors

DEFINE MATERIAL
.5284,

Special meanings for types 20-27: If the pen number is zero, vectorial hatches will be generated with the active pen. Zero value
for a texture or fill index allows you to define materials without a vectorial hatch or texture.

4

OORFRPNOOORKHO
DY

4

[@R\NE N6 Ne)

~ N~ ~

4

4

0.0

DEFINE MATERIAL "asphalt"

4

0,

"water"
0.5989,

.5284, 0.5989,
0

0,

0.6167,!

0.6167, !

surface RGB
ambient coefficient
diffuse coefficient

specular coeff.

[0.0..1.0

]
(0.
[0.

0..1.0]
0..1.0]

[0.0..1.0]

transparent coeff.
[0.0..100.0]

I
!
!
I
!
! shining
I
!
!
I

specular RGB
emission RGB

emission atten.

1,

transparency atten.
[(0.0..1.0]
[0.0..1.0]

[(0.0..1.0]

(0.

0..4.0]

[0.0..65.5]

0.1995, 0.2023, 0.2418,! surface RGB [0.0..1.0]
1.0, 1.0, 0.0, 0.0,
! ambient, diffuse, specular, transparent
! coefficients [0.0..1.0]
0, ! shining [0..100]
0 ! transparency attenuation [0..4]
DEFINE MATERIAL "matte red" 2,
1.0, 0.0, 0.0 ! surface RGB [0.0..1.0]
GDL Reference Guide 226

Attributes

Example 2: Material with fill

DEFINE MATERIAL "Brick-Red" 10,
0.878294, 0.398199, 0.109468,
0.58, 0.85, 0.0, 0.0,

0,

0.0,

0.878401, 0.513481, 0.412253,

0.0, 0.0, 0.0,

0,

IND(FILL, "common brick™") ' £fill index

Excample 3: Material with fill and texture
DEFINE MATERIAL "Yellow Brick+*" 20,

1, 1, O, ! surface RGB [0.0 .. 1.0]

0.58, 0.85, 0, O,

! ambient, diffuse, specular, transparent

! coefficients [0.0 .. 1.0]

0, ! shining [0.0 .. 100.0]

0, ! transparency attenuation [0.0 .. 4.0]
0.878401, 0.513481, 0.412253, ! specular RGB [0.0 .. 1.0]
o, 0, O, ! emission RGB [0.0 .. 1.0]

0, ! emission attenuation [0.0 .. 65.5]
IND(FILL, "common brick"), 61,

IND (TEXTURE, "Brick")

I

Fill index, color index, texture index

DEFINE MATERIAL BASED_ON

DEFINE MATERIAL name [,] BASED ON orig name [,] PARAMETERS namel = exprl [, ...]

[[,] ADDITIONAL DATA namel = exprl [, ...]]
Material definition based on an existing material. Specified parameters of the original material will be overwritten by the new values, other
parameters remain untouched. Using the command without actual parameters results in a material exactly the same as the original, but with a
different name. Parameter values of a matetial can be obtained using the REQUEST{2} ("Matetial_info", ...) function.

orig name: name of the original material (name of an existing, previously defined GDL or floor plan material).

namei: material parameter name to be overwritten by a new value. Names corresponding to parameters of material definition:
gs mat surface r, gs mat surface g, gs mat surface b: (surface RGB [0.0..1.0])
gs _mat ambient: (ambient coefficient [0.0..1.0])

GDL Reference Guide 227

Attributes

gs mat diffuse: (diffuse coefficient [0.0..1.0])

gs _mat specular: (specular coefficient [0.0..1.0])

gs _mat transparent: (transparent coefficient [0.0..1.0])

gs_mat shining: (shininess [0.0..100.0])

gs mat transp att: (transparency attenuation [0.0..4.0])

gs _mat specular r, gs mat specular g, gs mat specular b: (specular color RGB [0.0..1.0])
gs mat emission r, gs mat emission g, gs mat emission Db: (emission color RGB [0.0..1.0])
gs mat emission att: (emission attenuation [0.0..65.5])

gs mat fill ind: (fill index)

gs mat fillcolor ind: (fill color index)

gs mat texture ind: (textureindex)

expri: new value to overwrite the specified parameter of the material. Value ranges are the same as at the material definition.

Example:

n = REQUEST{2} ("Material info", "Brick-Face", "gs mat emission rgb",
em r, em g, em b)

emr =emr + (1 - em r) /

em g =em g + (1 - em g) /

em b =em b + (1 - em b) /

DEFINE MATERIAL "Brick-Face light" [,] BASED ON "Brick-Face" \
PARAMETERS gs mat emission r = emﬁr,_
gs_mat emission g = em g, gs mat emission b = em b

SET MATERIAL "Brick-Face" N B

BRICK a, b, zzyzx

ADDX a

SET MATERIAL "Brick-Face light"

BRICK a, b, zzyzx

DEFINE TEXTURE

DEFINE TEXTURE name expression, x, y, mask, angle
Any GDL script can include texture definition prior to the first reference to that texture name. The texture can be used only in the script in

3
3
3

which it was defined and its subsequent second generation scripts.
name: name of the texture.

expression: picture associated with the texture. A string expression means a file name, a numerical expression an index of a picture
stored in the library part. A 0 index is a special value which refers to the preview picture of the library part.

GDL Reference Guide 228

Attributes

x: logical width of the texture.

y: logical height of the texture.

mask:
mask = j; + 2*%jp + 4*j3 + 8%y + 16*J5 + 32*%Jg + 64*j7 + 128%jg + 256*Jg, where each j can be 0 or 1.
Alpha channel controls (j1... j6):

j1: alpha channel changes the transparency of texture,

j2: Bump mapping or surface normal perturbation. Bump mapping uses the alpha channel to determine the amplitude of the surface
normal,

j3: alpha channel changes the diffuse color of texture,

ja: alpha channel changes the specular color of texture,

js5: alpha channel changes the ambient color of texture,

Je: alpha channel changes the surface color of texture,

Connection controls (j7... j9): (If the value is zero, normal mode is selected.)

J7: the texture will be shifted randomly,

jg: mirroring in x direction,

GDL Reference Guide 229

Attributes

jg: mirroring in y direction.

angle: angle of the rotation.

Example:
DEFINE TEXTURE "Brick" "Brick.PICT", 1.35, 0.3, 256+128, 35.0

Fills
DEFINE FILL

DEFINE FILL name [[,] FILLTYPES MASK fill types,]
patternl, pattern?2, pattern3, pattern4,
patternb, pattern6, pattern’, pattern§,
spacing, angle, n,
frequencyl, directionl, offset x1, offset yl, ml,

lengthll, ..., lengthlm,
frequencyn, directionn, offset xn,
lengthnl, ..., lengthnm
GDL Reference Guide 230

Attributes

Note 1: This command can contain additional data definition.
See the section called “Additional Data” for details.

Any GDL script may include fill definitions prior to the first reference to that fill name. The fill defined this way can be used only in the script
in which it was defined and its subsequent second generation-scripts.

/ /
[
Lo

m line part /

< /

dir c'[ioni
’Q, I

name: name of the fill.
fill types:
fill types = ji1 + 2*jp + 4*j3,whereeachjcanbeOor 1.
ji1: cutfills,
Jo: cover fills,
j3: drafting fills.
If the j bit is set, the defined fill can be used corresponding to its specified type. Default is all fills (0).

pattern definition: patternl, pattern2, pattern3, pattern4, pattern5, pattern6, pattern7,
pattern8: 8 numbers between 0 and 255 representing binary values. Defines the bitmap pattern of the fill.

GDL Reference Guide 231

Attributes

2
Q. angl
2 9

. ‘_\g*‘ﬁ

spacing: hatch spacing - defines a global scaling factor for the whole fill. All values will be multiplied by this number in both the x and

y direction.
angle: global rotation angle in degrees.
n: number of hatch lines.
frequencyi: frequency of the line (the distance between two lines is spacing * frequencyi).
diri: direction angle of the line in degrees.
offset xi, offset yi: offset of the line from the origin.
mi: number of line parts.

lengthij: length of the line parts (the real length is spacing * lengthij). Line parts are segments and spaces following each other. First
line part is a segment, zero length means a dot.

The bitmap pattern is only defined by the patternl... pattern8 parameters and is used when the display options for Polygon Fills are set to

"Bitmap Pattern". To define it, choose the smallest unit of the fill, and represent it as dots and empty spaces using a rectangular grid with 8x8

locations. The 8 pattern parameters are decimal representations of the binary values in the lines of the grid (a dot is 1, an empty space is 0).

The vectorial hatch is defined by the second part of the fill definition as a collection of dashed lines repeated with a given frequency (frequencyi).
Each line of the collection is described by its direction (directioni), its offset from the origin (offset_xi, offset_yi) and the dashed line definition
which contains segments and spaces with the given length (lengthij) following each other.

GDL Reference Guide 232

Attributes

Note 2: Only simple fills can be defined with the DEFINE FILL command. There is no possibility to define symbol fills with this command.

Excample:

DEFINE FILL
34,

HFR R WP WRO
.o e

Bitmap pattern:

Pattern:
patternl
pattern?
pattern3
patternd
patternb
pattern6
pattern?
pattern8

View:

"brick" 85, 255, 136, 255,
255,
.08333,
.0, 0.0,

136, 255,
0.0, 4,
0.0, 0.0, O,

%0.0, 0.0, 0.0, 2,

1.0,

90.0, 1.5, 1.0, 4,

1.0, 1.0,

90.0, 0.75, 3.0, 2,

0,
0,
0,
.0, 3.0,
S,
0,

5.0

85

255
136
255
34

255
136
255

Binary value:
01010101 = o o o
11111111 eeeecececee
10001000 - .
11111111 eeececececce
00100010 . .
11111111 eeececececee
10001000 = .
11111111 eeeecececee

Vectorial hatch:

GDL Reference Guide

233

Attributes

DEFINE FILLA

DEFINE FILLA name [,] [FILLTYPES MASK fill types,]
patternl, pattern2, pattern3, patterni,
patternb5, patterné6, pattern’, patterns,
spacing x, spacing y, angle, n,
frequencyl, directional offsetl, directionl,
offset x1, offset yl, ml,
lengthlIl, ..., lengthilm,

frequencyn, directional offsetn, directionn,
offset xn, offset yn, mn,
lengthnl, ..., lengthnm

Note: This command can contain additional data definition.
See the section called “Additional Data” for details.

% / /

Iength /
Iength m line parts
@ /
offset y fequ en
cy
/ ﬁequenc
offset_x

An extended DEFINE FILL statement.

/

dlrectlonal _offset,

directional_offset,

GDL Reference Guide

234

Attributes

spacing_x, spacing_y: spacing factor in the x and y direction, respectively. These two parameters define a global scaling factor for
the whole fill. All values in the x direction will be multiplied by spacing_x and all values in the y direction will be multiplied by spacing_y.

directional offseti: the offset of the beginning of the next similar hatch line, measured along the line’s direction. Each line of
the series will be drawn at a distance defined by frequencyi with an offset defined by directional_offseti. The real length of the offset will
be modulated by the defined spacing;

Example:

DEFINE FILLA "TEST" 8, 142, 128, 232,
8, 142, 128, 232,

0.5, 0.5, 0, 2,
2, 1, 90, O,

0, 2, 1, 1,

1, 2, 0, 0, O,
2, 1, 3

FILL "TEST"

POLY2 4, 6,
-0.5, -0.5,
12, 6, -0.5, 6

Bitmap pattern:

GDL Reference Guide 235

Attributes

Pattern: Binary value:

patl = 8 00001000 .

pat2 = 142 10001110 - L

pat3 = 128 10000000 -

patd = 232 11101000 eee o

patb = 8 00001000 .

pat6 = 142 10001110 - e

pat7 = 128 10000000 -

pat8 = 232 11101000 eee o

View: Vectorial hatch:

| -
L

DEFINE SYMBOL_FILL

DEFINE SYMBOL FILL name [,] [FILLTYPES MASK fill types,]

patl, pat2, pat3, pat4, patd, pat6, pat7, pats§,

spacingxl, spacingyl, spacingx2?2, spacingy2,

angle, scalingl, scaling2, macro name [,] PARAMETERS [namel
= valuel, ..., namen = valuen]

Note: This command can contain additional data definition.
See the section called “Additional Data” for details.

GDL Reference Guide

236

Attributes

[)
_

3 A angle
2. -~ \
> -
fel \
©

U (N -

An extended DEFINE FILL statement, which allows you to include a library part drawing in a fill definition. The usage of macro_name and
the parameters are the same as for the CALL command.

spacingxl, spacingx2: horizontal spacings.
spacingyl, spacingy2: vertical spacings.
scalingl: horizontal scale.

scaling2: vertical scale.

macro_name: the name of the library part.
DEFINE SOLID_FILL

DEFINE SOLID_FILL name [[,] FILLTYPES_MASK fill_types]
Defines a solid fill.

Note: This command can contain additional data definition.

GDL Reference Guide 237

Attributes

See the section called “Additional Data” for details.

DEFINE EMPTY_FILL

DEFINE EMPTY FILL name [[,] FILLTYPES MASK fill types]
Defines an empty fill.

Note: This command can contain additional data definition.

See the section called “Additional Data” for details.

DEFINE LINEAR_GRADIENT FILL
DEFINE LINEAR_GRADIENT_FILL name [[,] FILLTYPES_MASK fill_types}
Define linear gradient fill.

DEFINE RADIAL GRADIENT FILL
DEFINE RADIAL_GRADIENT_FILL name [[,] FILLTYPES_MASK fill_types}
Define radial gradient fill.

DEFINE TRANSLUCENT_FILL

DEFINE TRANSLUCENT FILL name [[,] FILLTYPES MASK fill types]
patl, pat2, pat3, pat4, patd, pat6, pat7, pats§,
percentage

Define a fill, which shows the background and foreground colors in mixture defined by the given percentage value.

percentage: percentage of foreground color opacity; 0 displays background color only (like empty fill), 100 displays the foreground
color only (like solid fill).

DEFINE IMAGE_FILL

DEFINE IMAGE FILL name image name [[,] FILLTYPES MASK fill types]
partl, part2, part3, partd4, partb, parté6, part7, parts§,
image vert size, image hor size, image mask, image rotangle

Define a fill based on an image pattern.
image name: name of the pattern image loaded in the current library.
image_vert size, image hor size: model size of the pattern.
image mask: tiling directive

image mask = 1024*j1; + 2048%*j15, where each j canbe 0 or 1.

GDL Reference Guide 238

Attributes

For more information about laying out images on a surface see the DEFINE TEXTURE command.
j11: mirroring in x direction
j12: mirroring in y direction

image_rotangle: rotation angle of the pattern from the normal coordinate system.

Line Types
DEFINE LINE_TYPE

DEFINE LINE TYPE name spacing, n,
lengthl, ..., lengthn

Note 1: This command can contain additional data definition.
See the section called “Additional Data” for details.

Any GDL script may include line type definitions prior to the first reference to that line-type name. The line type defined this way can be used
only for 2D elements in the script in which it was defined and its subsequent second generation scripts.

name: name of the line type.

spacing: spacing factor.

n: number of the line parts.

lengthi: length of the line parts (the real length is spacing * lengthi). Line parts consist of segments and spaces. First line part is a segment,

zero length means a dot.

Note 2: Only simple line types - i.e. consisting only of segments and spaces - can be defined with this command, defining symbol line types
can be done with the DEFINE SYMBOIL_LINE command.

Excample:
DEFINE LINE TYPE "line - - ." 1

6, 0.005, 0.002, O.éOl, 0.002, 0.0, 0.002

DEFINE SYMBOL_LINE

DEFINE SYMBOL LINE name dash, gap, macro name PARAMETERS [namel = valuel,

namen = valuen]

GDL Reference Guide 239

Attributes

Note: This command can contain additional data definition.
See the section called “Additional Data” for details.

An extended DEFINE LINE statement, which allows you to include a library part drawing in a line definition. The usage of macro_name and
the parameters are the same as for the CALL command.

dash: scale of both line components.

gap: gap between each component.

Text Styles and Text Blocks
DEFINE STYLE

DEFINE STYLE name font family, size, anchor, face code
Recommended to be used with the TEXT2 and TEXT commands.

GDL scripts may include style definitions prior to the first reference to that style name. The style defined this way can be used only in the script
in which it was defined and its subsequent second generation scripts.

name: name of the style.

font_family: name of the used font family (e.g.,, Garamond).

size: height of the "I" character in millimeters in paper space or meters in model space.

If the defined style is used with the TEXT2 and TEXT commands, size means character heights in millimeters.

If used with PARAGRAPH strings in the RICHTEXT2 and RICHTEXT commands, size meaning millimeters or meters depends on the
fixed_height parameter of the TEXTBLOCK definition, while the outline and shadow face_code values and the anchor values are not effective.

01010
01020
Q1020

GDL Reference Guide 240

anchor: code of the position point in the text.

Attributes

face_code: acombination of the following values:
face code = j; + 2*%*3j, + 4*7j3, where eachjcan be 0 or 1.
j 1+ bOld,
o italic,
J3: undetline,

If face_code = 0, then style is normal.

DEFINE STYLE{2}
DEFINE STYLE{2} name font family, size, face code
New version of style definition, recommended to be used with PARAGRAPH definitions.

name: name of the style.
font_family: name of the used font family (e.g.,, Garamond).
size: height of the characters in mm or m in model space.

face_code: acombination of the following values:
face code = ji; + 2*%jy + 4*j3 + 32*jg + 64*J7 + 128*%Jjg, where eachjcanbe 0 or 1.
j1: bold,
o italic,
Jj3: undetline,
Je: superscript,
j7: subscript,
jg: strikethrough.
If face_code = 0, then style is normal.

If the defined style is used with the TEXT2 command, size means character heights in millimeters, while the superscript, subscript and
strikethrough face_code values are not effective. If used with PARAGRAPH strings in the RICHTEXT2 and RICHTEXT commands, size
meaning millimeters or meters depends on the fixed_height parameter of the TEXTBLOCK definition.

GDL Reference Guide 241

Attributes

PARAGRAPH

PARAGRAPH name alignment, firstline indent,
left indent, right indent, line spacing [,
tab positionl, ...] o

[PEN index]

[[SET] STYLE stylel]
[[SET] MATERIAL index]
'stringl’

'string2’'

'string n'

[PEN index]

[[SET] STYLE styleZ2]

[[SET] MATERIAL index]
'stringl’

'string2'

'string n'
ENDPARAGRAPH

GDL scripts may include paragraph definitions prior to the first reference to that paragraph name. The paragraph defined this way can be used
only in the script in which it was defined and its subsequent second generation scripts. A paragraph is defined to be a sequence of an arbitrary
number of strings (max 256 characters long each) with different attributes: style, pen and material (3D). If no attributes are specified inside
the paragraph definition, actual (or default) attributes are used. The new lines included in a paragraph string (using the special character "\n')
will automatically split the string into identical paragraphs, each containing one line. Paragraph definitions can be referenced by name in the
TEXTBLOCK command. All length type parameters (firstline_indent, left_indent, right_indent, tab_position) meaning millimeters or meters
depends on the fixed_height parameter of the TEXTBLOCK definition.

name: name of the paragraph. Can be either string or integer. Integer identifiers works only with the TEXTBLOCK_ command

alignment: alignment of the paragraph strings. Possible values:
1: left aligned,
2: center aligned,
3: right aligned,
4: full justified.

firstline_indent: (firstline indentation, in mm or m in model space.

GDL Reference Guide 242

Attributes

left_indent: leftindentation, in mm or m in model space.
right indent: rightindentation, in mm or m in model space.

line_spacing: line spacing factor. The default distance between the lines (character size + distance to the next line) defined by the
actual style will be multiplied by this number.

tab_positioni: consecutive tabulator positions (each relative to the beginning of the paragraph), in mm or m in model space. Tabulators
in the paragraph strings will snap to these positions. If no tabulator positions are specified, default values are used (12.7 mm). Works only
with "\t' special character.

stringi: partof the text. Can be cither constant string or string type parametet.

TEXTBLOCK
TEXTBLOCK name width, anchor, angle, width factor, charspace factor, fixed height,

'string exprl' [, 'string expr2', ...]
Textblock definition. GDL scripts may include textblock definitions prior to the first reference to that textblock name. The textblock defined this
way can be used only in the script in which it was defined and its subsequent second generation scripts. A textblock is defined to be a sequence
of an arbitrary number of strings or paragraphs which can be placed using the RICHTEXT2 command and the RICHTEXT command. Use
the REQUEST ("TEXTBLOCK_INFO", ...) function to obtain information on the calculated width and height of a textblock.

name: name of the textblock, string type value.
width: textblock width in mm or m in model space, if 0 it is calculated automatically.

anchor: code of the position point in the text.

OO0
OO0
OO0

angle: rotation angle of the textblock in degrees.

width_factor: Character widths defined by the actual style will be multiplied by this number.

GDL Reference Guide 243

Attributes

charspace_ factor: The horizontal distance between two characters will be multiplied by this number.

fixed height: Possible values:
1: the placed TEXTBLOCK will be scale-independent and all specified length type parameters will mean millimeters,
0: the placed TEXTBLOCK will be scale-dependent and all specified length type parameters will mean meters in model space.

string expri: means paragraph name if it was previously defined, simple string otherwise (with default paragraph parameters).

TEXTBLOCK _
TEXTBLOCK _ name width, anchor, angle, width factor, charspace factor, fixed height, n,
'expr 1' [, 'expr 2', ..., 'expr n']

Similar to the TEXTBLOCK command. The meaning of all the parameters are the same, with the following additions:
expr_ i: paragraph names can be cither string or integer types within one textblock.

n: number of listed expr_i names

Additional Data

Attribute definitions can contain optional additional data definitions after the ADDITIONAL_DATA keyword. The additional data must be
entered after the previously defined parameters of the attribute command. An additional data has a name (namei) and a value (valuei), which
can be an expression of any type, even an array. If a string parameter name ends with the substring "_file", its value is considered to be a file
name and will be included in the archive project. Different meanings of additional data can be defined and used by the executing application.

Additional data definition is available in the following commands:

DEFINE MATERIAL parameters [[,] ADDITIONAL DATA namel = valuel, name2 = value2, ...]

DEFINE MATERIAL name [,] BASED_ON orig name [,] PARAMETERS namel = exprl [, ...]
[[,] ADDITIONAL DATA namel = exprl [, ...]]

DEFINE FILL parameters [[,] ADDITIONAL DATA namel = valuel, name2 = value2, ...]

DEFINE FILLA parameters [[,] ADDITIONAL DATA namel = valuel, name2 = value2, ...]
DEFINE SYMBOL FILL parameters
[[,] ADDITIONAL DATA namel = valuel, name2 = value2, ...]

DEFINE SOLID FILL name [[,] FILLTYPES MASK fill types]

[[,] ADDITIONAL DATA namel = valuel, nameZ = value2, ...]
DEFINE EMPTY FILL name [[,] FILLTYPES MASK fill types]

[[,] ADDITIONAL DATA namel = valuel, name2 = value2, ...]
DEFINE LINEAR_GRADIENT_FILL name [[,] FILLTYPES_MASK fill_types]

[[,] ADDITIONAL DATA namel = valuel, nameZ = valueZ, ...]

GDL Reference Guide 244

Attributes

DEFINE RADIAL GRADIENT FILL name [[,] FILLTYPES MASK fill types]

[[,] ADDITIONAL DATA namel = valuel, nameZ = value2Z, ...]
DEFINE TRANSLUCENT_FILL name [[,] FILLTYPES_MASK fill_types]

patl, pat2, pat3, pat4, patd, pat6, pat7, pats§,

percentage [[,] ADDITIONAL DATA namel = valuel, name2 = value2, ...]
DEFINE IMAGE FILL name image name [[,] FILLTYPES MASK fill types]

partl, part2, part3, partd4, partb, part6, part7, parts§,

image vert size, image hor size, image mask, image rotangle

[[,] ADDITIONAL DATA namel = valuel, name2 = value2, ...]
DEFINE LINE TYPE parameters [[,] ADDITIONAL DATA namel = valuel, name2 = valueZ,
DEFINE SYMBOL LINE parameters

[[,] ADDITIONAL DATA namel = valuel, name2 = value2, ...]

EXTERNAL FILE DEPENDENCE
FILE DEPENDENCE

FILE DEPENDENCE "namel" [, "name2", ...]
You can give a list of external files on which your GDL script depends on. File names should be constant strings.

All files specified here will be included in the archive project (like constant macro names used in CALL statements and constant picture names
used in various GDL commands). The command works on this level only: if the specified files are library parts, their called macro files will

not be included.

The command can be useful in cases when external files are referenced at custom places in the GDL script, for example: ADDITIONAL_DATA

file parameters, data files in file operations.

GDL Reference Guide

245

Non-Geometric Scripts

NON-GEOMETRIC SCRIPTS

In addition to the 3D and 2D script windows that define the appearance of the GDL Object, further scripts are available for adding
complementary information to it. These are the Properties Script used for quantity calculations, the Parameter Script that includes the list of
possible values for different parameters, and the User Interface Script for creating a custom interface for parameter entry, Forward Migration
Script and Backward Migration Scripts to define how to migrate an old instance forward to the actual element or how to migrate the element
backward to an older one. The commands available for all these script types are detailed on the following pages.

THE PROPERTIES SCRIPT

Library parts have a GDL window reserved for the Properties script. This script allows you to make library part properties dependent on
parameters, and, through a directive, define their place in the final component list. By using a few commands, it is possible to define in the
script local descriptors and components. Descriptors and components from external databases can also be referenced. Code lengths cannot
exceed 32 characters.

In the Properties script, you can use any GDL command that does not generate a shape.

DATABASE_SET

DATABASE SET set name [, descriptor name, component name, unit name, key name,
criteria name, list set name]

Database set definition or Database set selection. If this command is placed in a MASTER_GDL script, it will define a Database set containing
Descriptor, Component, Unit, Key, Criteria and List Scheme files.

This Database set name can then be referenced from Properties Scripts using the same command with only the set_name parameter as a
directive, by selecting the actual Database set that REF COMPONENTSs and REF DESCRIPTORs refer to. The default Database set name
is "Default Set", and will be used if no other set has been selected. The default Database set file names are: DESCDATA, COMPDATA,
COMPUNIT, LISTKEY, LISTCRIT, LISTSET. All these names get translated in localized ARCHICAD versions.

Scripts can include any number of DATABASE_SET selections.
set name: database set name.

descriptor name: descriptor data file name.
component name: component data file name.

unit name: unit data file name.

key name: key data file name.

GDL Reference Guide 246

Non-Geometric Scripts

criteria name: criteria file name.

list_set name: list Scheme file name.

DESCRIPTOR
DESCRIPTOR name [, code, keycode]
Local descriptor definition. Scripts can include any number of DESCRIPTORs.

name: can extend to more than one line. New lines can be defined by the character "\n' and tabulators by "\t'. Adding "\' to the end of a line
allows you to continue the string in the next line without adding a new line. Inside the string, if the "\' character is doubled (\\), it will lose
its control function and simply mean "\". The length of the string (including the new line characters) cannot exceed 255 characters: additional
characters will be simply cut by the compiler. If you need a longer text, use several DESCRIPTOREs.

code: string, defines a code for the descriptor.
keycode: string, reference to a key in an external database.

The key will be assigned to the descriptor.
REF DESCRIPTOR

REF DESCRIPTOR code [, keycode]

Reference by code and keycode string to a descriptor in an external database.

COMPONENT

COMPONENT name, quantity, unit [, proportional with, code, keycode, unitcode]
Local component definition. Scripts can include any number of COMP(_)NENTS.

name: the name of the component (max. 128 characters).

quantity: anumeric expression.

unit: the string used for unit description.

proportional with: a code between 1 and 6. When listing, the component quantity defined above will be automatically multiplied
by a value calculated for the current listed element:

1: item,

2: length,

3: surface A,
4: surface B,
5: surface,

GDL Reference Guide 247

Non-Geometric Scripts

6: volume.
code: string, defines a code for the component.
keycode: string, reference to a key in an external database. The key will be assigned to the component.

unitcode: string, reference to a unit in an external database that controls the output format of the component quantity. This will replace
the locally defined unit string.

REF COMPONENT
REF COMPONENT code [, keycode [, numeric expression]]

Reference by code and keycode string to a component in an external database. The value to multiply by in the component database can be
overwritten by the optional numeric expression specified here.

BINARYPROP
BINARYPROP

Binaryprop is a reference to the binary properties data (components and descriptors) defined in the library part in the Components and
Descriptors sections.

DATABASE_SET ditectives have no effect on the binary data.

SURFACE3D
SURFACE3D ()
The Surface 3D () function gives you the surface of the 3D shape of the library part.

Warning: If you place two or more shapes in the same location with the same parameters, this function will give you the total sum of all shapes’
surfaces.

VOLUME3D
VOLUME3D ()
The Volume 3D () function gives you the volume of the 3D shape of the library part.

Warning: If you place two or more shapes in the same location with the same parameters, this function will give you the total sum of all shapes’
volumes.

POSITION
POSITION position keyword
Effective only in the Component List.

GDL Reference Guide 248

Non-Geometric Scripts

Changes only the type of the element the following descriptors and components are associated to. If there are no such directives in the Properties

script, descriptors and components will be listed with their default element types.

position_keyword: keywords are the following:
WALLS
COLUMNS
BEAMS
DOORS
WINDOWS
OBJECTS
CEILS
PITCHED_ ROOFS
LIGHTS
HATCHES
ROOMS
MESHES

A directive remains valid for all succeeding DESCRIPTORs and COMPONENTSs until the next directive is ascribed. A script can include any

number of directives.

Example:

DESCRIPTOR "\tPainted box.\n\t Properties:\n\
\t\t - swinging doors\n\

\t\t - adjustable height\n\

\t\t - scratchproof"

REF DESCRIPTOR "0001"

s = SURFACE3D () !wardrobe surface

COMPONENT "glue", 1.5, "kg"

COMPONENT "handle", 2*c, "nb" !c number of doors
COMPONENT "paint", 0.5*s, "kg"

POSITION WALLS

REF COMPONENT "0002"

DRAWING
DRAWING

GDL Reference Guide

249

Non-Geometric Scripts

DRAWING: Refers to the drawing described in the 2D script of the same library part. Use it to place drawings in your bill of materials.

THE PARAMETER SCRIPT

Parameter lists are sets of possible numerical or string values. They can be applied to the parameters as defined in the Parameter Script of the
Library Part, in the ARCHICAD_LibraryMaster object or the MASTER_GDL script. Type compatibility is verified by the GDL compiler.

The Parameter Script will be interpreted each time a value list type parameter value is to be changed, and the possible values defined in the script
will appear in a pop-up menu. For numetical parameters pop-up menu item values can be defined as strings using the VALUES {2} command.

VALUES

VALUES "parameter name" [,]value definitionl [, value definition2, ...]
VALUES "fill parameter name" [[,] FILLTYPES MASK fill types,] value definitionl
[, value definition2, ...]
Defines a value restriction for a parameter. The command has a special syntax for fill type parameters. If used on an array parameter, the
restriction will be applied to all items individually.
parameter name: name of an existing parameter
fill parameter name: name of an existing fillpattern type parameter
fill types:
fill types = j1 + 2*J2 + 4*j3, whereeachjcanbeOor 1.
J1: cut fills,
Jo: cover fills,
j3: drafting fills.

Can be used for fill-pattern type parameters only. The fill popup for this parameter will contain only those types of fills which are specified
by the bits set to 1. Default is all fills (0).

value_definitioni: value definition, can be:
expression: numerical or string expression, or
CUSTOM: keyword, meaning that any custom value can be entered, or
RANGE: range definition, with optional step

RANGE left delimiter[lower limit], [upper limit]right delimiter [STEP step start value,
step value]

left_delimiter: [, meaning >=, or (, meaning >; lower_limit: lower limit expression; upper_limit: upper limit expression; right_delimiter: |,
meaning <=, or), meaning <; step_start_value: starting value; step_value: step value.

GDL Reference Guide 250

Non-Geometric Scripts

VALUES{2}

VALUES{2} "parameter name" [,]num expressionl, descriptionl,
[, num expression2, description2, ...]

VALUES{2} "parameter name" [,]num values arrayl, descriptions arrayl
[, num values array2, descriptions array2, ...]

parameter name: name of an existing angle, length, real, or integer type parameter

num_expressioni, num values_arrayi: simple value definition for a numerical parameter, or array expression containing
multiple numetical values. Available only for VALUES {2}

descriptioni, descriptions_arrayi: description string of the numerical value i, or array expression containing multiple
description strings of the values defined by num_values_arrayi (array dimensions must match). Available only for VALUES {2}

Example 1: Simple value lists

VALUES "parl" 1, 2, 3

VALUES 'lparz'l 'la", "b"

VALUES "par3" 1, CUSTOM, SIN (30)

VALUES "par4" 4, RANGE (5, 10], 12, RANGE(,20] STEP 14.5, 0.5, CUSTOM

Example 2: Read all string values from a file for use in a valne list

DIM sarray|]
! file in the library, containing parameter data

filename = "ProjectNotes.txt"
chl = OPEN ("text", filename, "MODE=RO, LIBRARY")
i=1
3 =1
sarray[l] = ""
! collect all strings
DO
n = INPUT (chl, i, 1, wvar)
IF n > 0 AND VARTYPE (var) = 2 THEN
sarrayl[j] = var
j=73+1
ENDIF

i=1+1
WHILE n > O
CLOSE chl
! parameter popup with strings read from the file
VALUES "RefNote" sarray

GDL Reference Guide 251

Non-Geometric Scripts

PARAMETERS

PARAMETERS namel = expressionl [,
name?2 = expression2, ...,
namen = expressionn]

namei: the name of the parameter.
expressioni: the new value of the parameter.
Using this command, the parameter values of a Library Part can be modified by the Parameter Script.

The modification will only be effective for the next interpretation. Commands in macros refer to the callet’s parameters. If the parameter is a
value list, the value chosen will be either an existing value, the custom value, or the first value from the value list.

In addition, the global string variable GLOB_MODPAR_NAME contains the name of the last user-modified parameter.
LOCK

LOCK '"namel" [, "name2", ..., "namen"]

Locks the named parameter(s) in the settings dialog box. A locked parameter will appear grayed in the dialog box and its value cannot be
modified by the user.

namen: string expression, name of the parameter to be locked.
LOCK ALL ["namel" [, "name2", ..., "namen"]]

Locks all parameters in the settings dialog box, except those listed after the ALL keyword.

HIDEPARAMETER
HIDEPARAMETER "namel" [, "name2", ..., "namen"]

Hides the named parameter(s) and its child parameters in the settings dialog box. A parameter hidden using this command in the parameter
script will automatically disappear from the parameter list.

namen: string expression, name of the parameter to be hidden.
HIDEPARAMETER ALL ["namel" [, "name2", ..., "namen"]]

Hides all parameters and its child parameters in the settings dialog box, except those (and their children) listed after the ALL keyword.

THE USER INTERFACE SCRIPT

Using the following GDL commands, you can define a custom interface for a Library Part’s Custom Settings panel in the settings dialog box.
If you click the Sez as defanit button in the Library Part editor, the custom interface will be used by default in the Object’s (Door’s, Window’s,

GDL Reference Guide 252

Non-Geometric Scripts

etc.) settings dialog box. Parameters with custom control are not hidden automatically on the original parameter list, but they can be hidden
manually in the library part editor.

» ¢ Parameters » =}y Parameters
F B'S Door, Knob, Sink and Tap Style
»] FloorPlan » [FloorPlan
» pPA Section P pA Section
P 3 Model b 3 Model
} = Listing and Labeling P =p Listing and Labeling

The origin of the coordinate system is in the top-left corner. Sizes and coordinate values are measured in pixels.

UI_DIALOG
UI DIALOG title [, size x, size y]
Defines the title of the dialog box. The default title is 'Custom Settings'. Currently, the size of the available area is fixed at 444 x 296 pixels,

and the size_x and size_y parameters are not used.

Restriction: The Interface Script should contain only one UI_DIALOG command.

UI_PAGE
UI_PAGE page number [, parent id, page title [, image]]
Page directive, defines the page that the interface elements are placed on. Default page numbering starts at 1, but any starting number is usable.

If there is no UI_PAGE command in the Interface Script, each element will be displayed on the first page by default. Moving between pages
can be defined in different ways:

* The easiest way is to let ARCHICAD do it: in the object editor, press the "Hierarchical Pages" button in the User Interface Script window,
and fill in the optional parameters of the UIl_PAGE command. In this case the page_number of the page selected from the tree is passed to
the library part through the "gs_ui_current_page" parameter. No need to set a value list for the paging parameter: ARCHICAD collects and
sorts all valid page ID-s from the UI_PAGE command's parameters by pre-reading the object's ui script.

* Another method is to use two buttons created with the UI_NEXT and UI_PREV commands, placing them on every page to manipulate
the value of the "gs_ui_current_page" parameter. See the UL_BUTTON command for more information.

* In case the new hierarchical page setup is not requited, to create dynamic page handling, use the the UI_INFIELD {3} command. Set a value
list for "gs_ui_current_page" parameter, and place a popup using its values on every page.

page_number: the page number, a positive integer. Following interface elements are placed on this page.

GDL Reference Guide 253

Non-Geometric Scripts

parent id: positive integer, the parent id of the page. The special value -1 value means root parent. Only evaluated if "Hierarchical Pages"
is set.

page_title: title string of the page, appears on the top of the page and the tree view popup of the pages. Only evaluated if "Hierarchical
Pages" is set.

image: file name or index number of a picture stored in the library part. If specified and not empty or 0, this icon associated to the page is
displayed on the top of the page and in tree view popup of the pages, next to the title. Only evaluated if "Hierarchical Pages" is set.

Warning: In the simple way of paging, any break of continuity in the page numbering forces the insertion of a new page without buttons, and
therefore there will be no possibility to go to any other page from there. This restriction can be circumvented using the U_ CURRENT_PAGE
command.

UI_CURRENT_PAGE
UI_CURRENT PAGE index
Definition of the current tabpage to display.

Warning: Jumping to a non-existent page forces the insertion of a new page without buttons and controls, and therefore there is no possibility
to go to any other page from there.

index: valid index of the UI_PAGE to display.
UI_ BUTTON

UI_BUTTON type, text, x, vy [, width, height, id [, url]]
Button definition on current page. Buttons can be used for various purposes: moving from page to page, opening a web page or performing
some parameter-script defined action. Buttons can contain text.
type: type of the button as follows:
UI PREV: if pressed, the previous page is displayed,
UI NEXT: if pressed, the next page is displayed,
UI FUNCTION: if pressed, the GLOB_UI_BUTTON_ID global variable is set to the button id specified in expression,
UI LINK: if pressed, the URL in expression is opened in the default web browser,
text: the text that should appear on the button.
x, y: the position of the button.
width, height: width and height of the button in pixels. If not specified (for compatibility reasons) the default values are 60 pixels
for width and 20 pixels for height.

id: an integer unique identifier.

GDL Reference Guide 254

Non-Geometric Scripts

url: a string containing a URL.

UI_PREV and UI_NEXT buttons are disabled if the previous/next page is not present. If these buttons are pushed, the gs_ui_current_page
parameter of the library part is set to the index of the page to show - if there’s a parameter with this name.

Excample:

! UI script
UI CURRENT PAGE gs ui current page
UI BUTTON UI FUNCTION, "Go to page 9", 200,150, 70,20, 3
UI BUTTON UI LINK, "Visit Website", 200,180, 100,20, O,
B "http://www.graphisoft.com"
! parameter script
if GLOB UI BUTTON ID = 3 then
" parameters gs ui current page = 9,
endif - n

UI_PICT_BUTTON

UI_PICT BUTTON type, text, picture reference,
X, y, width, height [, id [, url]]

Similar to the UI_BUTTON command. But this type of buttons can contain pictures.

picture_reference: file name or index number of the picture stored in the library part. The index 0 refers to the preview picture of
the library part. Pixel transparency is allowed in the picture.

text: has no effect for picture buttons.

UI_SEPARATOR
UI_SEPARATOR x1, yl, x2, y2

Generates a separator rectangle. The rectangle becomes a single (vertical or horizontal) separator line if x1 = x2 or y1 = y2
x1, yl: upper left node coordinates (starting point coordinates of the line).

x2, y2: lower right node coordinates (endpoint coordinates of the line).
UI_GROUPBOX

UI_GROUPBOX text, x, y, width, height
A groupbox is a rectangular separator with caption text. It can be used to visually group logically related parameters.

GDL Reference Guide 255

Non-Geometric Scripts

text: the title of the groupbox.
x, y: the position of upper left corner.

width, height: width and height in pixels.
UI_PICT

UI_PICT picture reference, x, y [, width, height [, mask]]
Picture element in the dialog box. The picture file must be located in one of the loaded libraties.

picture reference: file name or index number of the picture stored in the library part. The index O refers to the preview picture
of the library part.

X, y: position of the top left corner of the picture.

width, height: optional width and height in pixels; by default, the picture’s original width and height values will be used.
mask: alpha + distortion.

See the PICTURE command for full explanation.

UI_STYLE
UI_STYLE fontsize, face code
All the UI_OUTFIELDs and UI_INFIELDs generated after this keyword will represent this style until the next UI_STYLE statement.
fontsize: one of the following font size values:
0: small,
1: extra small,
2: large.
face_code: similar to the DEFINE STYLE command, but the values cannot be used in combination.
0: normal,

1: bold,
2 italic,
4 : undetline.
UI_OUTFIELD
UI_OUTFIELD expression, x, y [, width, height [, flags]]

Generates a static text.

expression: numerical or string expression.

GDL Reference Guide 256

Non-Geometric Scripts

X, y: position of the text block’s top left corner.

width, height: width and height of the text box. If omitted, the text box will wrap around the text as tight as possible for the given font.
flags:

flags = j1 + 2*j, + 4*7j3, where eachjcanbe0or 1.

j1: horizontal alignment (with j2),

j2: horizontal alignment (with j1):

j1 = 0, j2 = 0: Aligns to the left edge (default),

jl1 =1, j2 = 0: Aligns to the right edge,
jl = 0, j2 = 1: Aligns to the center,
31 =1, j2 = 1: Notused,
j3: grayed text.
UI_INFIELD

UI_INFIELD "name", x, y, width, height [,
method, picture name,
images number,
rows number, cell x, cell y,
image x, image y,
expression imagel, textl,

expression imagen, textn]

UL_INFIELD{2}

UI_INFIELD{2} name, X, y, width, height [,
method, picture name,
images number,
rows_ number, cell x, cell vy,
image x, image y,
expression imagel, textl,

expression_ imagen, textn]

GDL Reference Guide 257

Non-Geometric Scripts

UL_INFIELD{3}

UI_INFIELD{3} name, X, y, width, height [,
method, picture name,
images number,
rows number, cell x, cell y,
image x, image vy,
expression imagel, textl, value definitionl,

[picIdxArray, textArray, valuesArray,
.

expression_imagen, textn, value definitionn]

UL_INFIELD{4}

UI_INFIELD{4} "name", x, y, width, height [,
method, picture name,
images number,
rows number, cell x, cell y,
image x, image vy,
expression_ imagel, textl, value definitionl,

[picIdxArray, textArray, valuesArray,
expiession_imagen, textn, value definitionn]

Generates an edit text or a pop-up menu for the parameter input. A pop-up is generated if the parameter type is value list, material, fill, line

type or pencolor.

If the optional parameters of the command are present, value lists can be alternatively displayed as thumbnail view fields. Different thumbnail

control types are available. They display the specified images and associated texts and allow the selection of one single item at a time, just like

in a pop-up menu.

In the version 1 and 2 infield, the thumbnail items and the value list items are associated by indices.

The version 3 and version 4 infield defines value association which binds the thumbnail items to value list items of the associated parameter.

If a value defined in a thumbnail item isn’t present in the parameter’s value list, it won’t be displayed in the control. Identical sized arrays can

be used for lines of definition as well.

The Interface Script is rebuilt with the new value after any parameter is modified.

name: patameter name as string expression (all 4 command versions), with parameter name option for UI_INFIELD{2} and
UIL_INFIELD {3}, and patameter name as text array value option for UL_INFIELD {4}.

GDL Reference Guide 258

Non-Geometric Scripts

x, y: the position of the edit text, pop-up or control.
width, height: width and height in pixels.

method: the type of the control.
1: Listview control.

—_— -~
Mo Grill H- Grid
|
Prairie Style 1
Shyle [V]

2: Popup menu control.

(T 0 Jo
? JJ MNorrmal

JJ Extended

Extended Both Sides

RN
3: Popup icon radio control (arrow on picture).

i min

4 : Push icon radio control.

nryw

259

GDL Reference Guide

Non-Geometric Scripts

5: Pushbutton with text.

Checkbox 1
Checkbox 2

6: Pushbutton with picture.

7: Checkbox with text.

[]orafting Fills
Cover Fills
Lt Fills

8: Popup list with text.

1:100 w
1:50

1: 100

1:200

ICustorm

9: Popup icon radio control (arrow next to picture).
m W]

picture name: name of the common image file containing a matrix of concatenated images, or empty string,
images number: number of images in the matrix, for boolean parameters it can be 0 or 2.

rows_number: number of rows of the matrix.

cell x, cell y: width and height of a cell within the thumbnail view field, including image and text.

image x, image_y: width and height of the image in the cell.

GDL Reference Guide 260

Non-Geometric Scripts

expression_imagei: index ofimage number iin the matrix, or individual file name. If a common image file name was specified, indices
must be used here. Combination of indices and individual file names does not work.

texti: textin cell number i.

value_definitioni: value definition which matches the cell with a value list item by value:
expression: numerical or string expression, or
CUSTOM: keyword, meaning that any custom value can be entered.

picIdxArray: Dynamic array of picture names (strings) or indexes (integers) in cells. Do not use mixed types in array
textArray: Dynamic array of texts in cells

valueArray: Dynamic array of parameter values in cells

GDL Reference Guide 261

Non-Geometric Scripts

Example 1:

IF c THEN
UI DIALOG "Hole definition parameters"
UI OUTFIELD "Type of hole:",15,40,180,20
UI INFIELD "D",190,40,105,20
IF d="Rectangular" THEN
UI PICT "rect.pict",110,33,60,30
UI OUTFIELD "Width of hole",15,70,180,20
UI INFIELD "E", 190,70,105,20
UI OUTFIELD "Height of hole",15,100,180,20
UI INFIELD "F", 190,100,105,20
UI:OUTFIELD "Distance between holes",15,130,180,20
UI INFIELD "G", 190,130,105,20
ELSE
UI PICT "circle.pict",110,33,60,30
UI OUTFIELD "Diameter of hole circle",15,70,180,20
UI INFIELD "J", 190,70,105,20
UI OUTFIELD "Distance of hole centers", 15,100,180,20
UI INFIELD "K", 190,100,105,20
UI OUTFIELD "Resolution of hole circle", 15,130,180,20
UI INFIELD "M", 190,130,105,20
ENDIF
UI OUTFIELD "Number of holes",15,160,180,20
UI INFIELD "I", 190,160,105,20
ENDIF
UI SEPARATOR 50,195,250,195
UI OUTFIELD "Material of beam", 15,210,180,20
UI INFIELD "MAT", 190,210,105,20
UI OUTFIELD "Pen of beam", 15,240,180,20
UI INFIELD "P", 190,240,105,20

GDL Reference Guide

262

Non-Geometric Scripts

Hole definition parameters

Type of hale: | Rectangular

Width of hole 0.5000 (O]
Height of hale 0.5000 D]
Distance betwsen holes 0.2000 [

Number of holes 3

Material of beam D Paint-01 4
s | —

Example 2:

!
VA

pPx
Py
cx

cy

Parameter Script:

LUES "myParameter" "Two", "Three",
Interface Script:

= 80

= 60

= px + 3

= py + 25

UI INFIELD{3} "myParameter",

~

4 * cx + 21,

1, "myPicture", 6,

1, cx, cy, px, pY,

l, "l — One", "One",

2, "y _ tWO", HTWOH,

3, "3 - three", "Three",
4, "4 - four", "Four",

5, "5 - five", "Five",

6, "custom value", CUSTOM

Hole definition parameters

Diameter of hole circle 0.5000 ®
Distance of hole centers 0,8000 E]
Resclution of hole circle e E]

Number of holes 3

Material of beam D Paint-01 4
s | —

CUSTOM

cy + 5,

GDL Reference Guide

263

Non-Geometric Scripts

Example 3:

! Parameter Script:
VALUES "myParameter" "Two", "Three",

! Interface Script:
px = 80

py = 60

cx = px + 3

cy = py + 25

paramNameVar = "myParameter"
UI INFIELD{4} paramNameVar, 10, 10,
1, "myPicture", 6,

1, cx, cy, pPX, pPY,

l, LUy [One", "one",

2, LU - tWO", "TWO",

3, "3 - three", "Three",
4, "4 - four", "Four",

5, "5 - five", "Five",

6, "custom value", CUSTOM

"Five", CUSTOM

4 * cx + 21,

cy + 5,

GDL Reference Guide

264

Non-Geometric Scripts

Example 4:

! Master Script

dim picIdxValuesUI[]
dim textValuesUI[]
dim parameterValues][]

if myTypeParameter = 1 then
picIdxValuesUI[1l] = 6
picIdxValuesUI[2] = 7
picIdxValuesUI[3] = 8

textValuesUI[1l] = "6 - six"
textValuesUI[2] = "7 - seven"
textValuesUI[3] = "8 - eight"
parameterValues[1l] = "Six"
parameterValues[2] = "Seven"
parameterValues[3] = "Eight"

else
picIdxValuesUI[1l] = 6
picIdxValuesUI[2] = 7
textValuesUI[1l] = "6 - six"
textValuesUI[2] = "7 - seven"
parameterValues[l] = "Six"
parameterValues[2] = "Seven"

endif

GDL Reference Guide

265

Non-Geometric Scripts

! Parameter Script:
VALUES "myTypeParameter"™ 1, 2
VALUES "myStringParameter" "Two", "Three", "Five", parameterValues,

! Interface Script:

px = 80

py = 60

cx = px + 3

cy = py + 25

paramNameVar = "myStringParameter"

UI INFIELD{4} paramNameVar, 10, 10, 4 * cx + 21, cy + 5,
1, "myPicture", 6,
cx, CY, PX, PV,

1,

l, "l _ One", "One",

2, "y o_ tWO", "TWO",

3, "3 - three", "Three",

4, "4 - four", "Four",

5, "5 - five", "Five",

picIdxValuesUI, textValuesUI, parameterValues,
9, "custom value", CUSTOM

UI_CUSTOM_POPUP_INFIELD

UI_CUSTOM POPUP_ INFIELD "name", x, y, width, height,
storeHiddenId, treeDepth,
groupingMethod, selectedValDescription,
valuel, value2, valuesArrayl, valuen, valuesArrayn

UL_CUSTOM_POPUP_INFIELD{2}

UI_CUSTOM_POPUP_INFIELD{2} name, X, y, width, height,
storeHiddenId, treeDepth,
groupingMethod, selectedValDescription,
valuel, value2, valuesArrayl, valuen, valuesArrayn

Compatibility: introduced in ARCHICAD 20.

CUSTOM

Generates a popup for a value list of a parameter defined in the User Interface script to avoid using the Parameter script.

GDL Reference Guide

266

Non-Geometric Scripts

Suitable for lists which can not be requested in Parameter script. For the parameter script restrictions see the section called “REQUEST Options”.

name: parameter name as string expression for UL_CUSTOM_POPUP_INFIELD or parameter name with optional actual index values
if array for UI_CUSTOM_POPUP_INFIELD {2}.

x, y: the position of the edit text, pop-up.
width, height: width and height in pixels.

storeHiddenId, treeDepth: to setup automatic or manual trees.
storeHiddenId = 0, treeDepth = 0: works only with array parameters.

The "treeDepth" parameter is set automatically by the second dimension (number of columns) of the array.
storeHiddenId = 1, treeDepth > 0: works only with single parameters.
There must be n * (1 + treeDepth) values defined (first one for the stored ID and the rest for defining the custom tree).

groupingMethod: grouping method for sorting the tree.
1: does not sort the groups and values under the same parent.

=J-aroupl
E----valuel
Lovalue2
=-group2
fovaluel
E--gruuﬂ
Lovalue3
El--gru:uupz
Lovalue2
-values
-valued

2: sorts the groups and values under the same parent.

GDL Reference Guide 267

Non-Geometric Scripts

-type2
[=J-group2

selectedValDescription: the text written in the field, if empty string the text will be the stored ID of the selected item.

valuei, valuesArrayi: define tree values one-by-one and/or with a one dimension atray.

Example:

UI CUSTOM POPUP_INFIELD "stParameterName", x, y, width, height,

1, 3, 2, "", ! storeHiddenId, treeDepth, groupingMethod, selectedValDescription
"hiddenID1", "typel", "groupl", "valuel",
"hiddenID2", "typel", "groupl", "value2",
"hiddenID3", "type2", "group2", "valuel",
"hiddenID4", "type2", "group2", "value2",
"hiddenID5", "type2", ", "value3",
"hiddenID6", "", "", "Value4",
"hiddenID7", "", "", "ValueS"

GDL Reference Guide 268

Non-Geometric Scripts

-type2

UI_RADIOBUTTON

UI_RADIOBUTTON name, value, text, x, y, width, height

UI_RADIOBUTTON({2}
UI_RADIOBUTTON{2} "name", value, text, x, y, width, height
Version {2} compatibility: introduced in ARCHICAD 20.

Generates a radio button of a radio button group. Radio button groups are defined by the parameter name. Items in the same group atre
mutually exclusive.

name: parameter name or name as string expression for UI_RADIOBUTTON and parameter name as string expression (or text array
indexed value) for U_RADIOBUTTON({2}.

value: parameter is set to this value if this radio button is set.
text: this text is displayed beside the radio button.
x, y: the position of the radio control.

width, height: width and height in pixels.

Example:

UI RADIOBUTTON "ceilingPlan", 0, "Floor Plan", 10, 140, 100, 20
UI RADIOBUTTON "ceilingPlan", 1, "Ceiling Plan’, 10, 160, 100, 20

GDL Reference Guide 269

Non-Geometric Scripts

l[Er}Flncncur Plan
{iCeiling Plan

UI_LISTFIELD
UI_LISTFIELD fieldID, x, y, width, height [, iconFlag [, description header [, value header]]]

Generates a control for the parameter input as a scrollable list containing an arbitrary number of rows, with the following columns: icon,
description and input field for the parameter value. Lines of the list can be defined with the UI_LISTITEM command. UI_LISTFIELD and
UI_LISTITEM definitions can be scripted in an arbitrary order. Empty listfields (with no list items) are not displayed.

fieldID: the unique identifier of the listfield. This ID also used in the UI_LISTITEM commands specifies the listfield the listitems belong
to. Duplicates within a user interface script are not allowed.

X, y: position of the listfield's top left cornet.
width, height: width and height in pixels.

iconFlag:
iconFlag = 0: icon column is not generated for this listfield.
iconFlag = 1: icon column is generated for this listfield (default value if not specified).

If the Custom Settings panel has only one control and this control is a listfield, the x, y, width, height parameters have no effect. In this case
the width of the listfield equals to the width of the Custom Settings panel.

description_header: the title of the Description column.
value_header: the title of the Value column.

If both description_header and value_header are empty strings or not specified, the listfield is generated without a header. If the strings contain
at least one space, the listfield is generated with an empty header.

UI_LISTITEM

UI_LISTITEM itemID, fieldID, "name" [, childFlag [, image [, paramDesc]]]

UL_LISTITEM{2}
UI_LISTITEM{2} itemID, fieldID, name [, childFlag [, image [, paramDesc]]]
Appends a listitem to the listfield defined by the fieldID parameter.

GDL Reference Guide 270

Non-Geometric Scripts

itemID: the unique identifier of the listitem. Listitems can be scripted in an arbitrary order and are sorted by itemID. Duplicate listitem
IDs within a listfield are not allowed.

fieldID: the unique identifier of the listfield containing this listitem.

name: parameter name as string expression for UI_LISTITEM or parameter name with optional actual index values if array for
UIL_LISTITEM{2}.

childFlag:
childFlag = O: the listitem is a groupitem (default value if not specified).
childFlag = 1: the listitem is a childitem. The parent item is the first groupitem above.

image: file name or index number of the picture stored in the library part. If valid, it is displayed as an icon in the first column of the
listfield in the associated listitem's row.

paramDesc: the visible name of the listitem in the Description column. If left empty, the description is automatically filled up from the
parameter list description of the Library Part. If there is no description there, the name of the parameter is displayed instead.

If "name" string is empty, the listitem is a group with bold fonttype. If both "name" string and paramDesc are empty, the listitem is a separator.
The HIDEPARAMETER command is ineffective for list items, the script should not add the item instead of using it. The LOCK command
can be used and it is effective for list items.

For a listfield it is recommended to define different itemIDs for different parameters, groups and separators.

Example:
! List with header without icon column

ui listfield 1, 10, 35, 432, 220, 0, "Description Header Text", "Value Header Text"

ui listitem 1, 1, "", 0, "", "Group Title 1" ! Group Line

ui listitem 2, 1, "A", 1

ui listitem 3, 1, "B", 1

ui listitem 4, 1, "ZZYZX", 1

ui listitem 5, 1, "" !separator

ui listitem 6, 1, "AC show2DHotspotsIn3D", 0, "", "Group Title 2" ! Group Parameter Line
ui listitem 7, 1, "A", 1, "", "Custom Description A"

ui listitem 8, 1, "B", 1, "", "Custom Description B"

ui listitem 9, 1, "ZZYZX", 1, "", "Custom Description ZZYZX"

GDL Reference Guide 271

Non-Geometric Scripts

Description Header Text Value Header Text
»
Dimension 1 1000
Dimension 2 1000
Height 1000
= Group Title 2 v
Custom Description A 1000
Custom Description B 1000
Custom Description ZZYZX 1000

UI_CUSTOM_POPUP_LISTITEM

UI_CUSTOM POPUP LISTITEM itemID, fieldID, "name", childFlag, image, paramDesc,
storeHiddenId, treeDepth,

groupingMethod, selectedValDescription,

valuel, value2, valuesArrayl, valuen, valuesArrayn

UI_CUSTOM_POPUP_LISTITEM{2}

UI_CUSTOM POPUP LISTITEM{2} itemID, fieldID, name, childFlag, image, paramDesc,
storeHiddenId, treeDepth,

groupingMethod, selectedValDescription,

valuel, value2, valuesArrayl, valuen, valuesArrayn

Compatibility: introduced in ARCHICAD 20.

Similar to the "UI_CUSTOM_POPUP_INFIELD" and the "UI_CUSTOM_POPUP_INFIELD {2}"

Generates a listitem with popup for a value list of a parameter defined in the User Interface script to avoid using the Parameter script.
Suitable for lists which can not be requested in Parameter script. For the parameter script restrictions see the section called “REQUEST Options”.

itemID: the unique identifier of the listitem. Listitems can be scripted in an arbitrary order and are sorted by itemID. Duplicate listitem
IDs within a listfield are not allowed.

GDL Reference Guide 272

Non-Geometric Scripts

fieldID: the unique identifier of the listfield containing this listitem.

name: parameter name as string expression for U_CUSTOM_POPUP_LISTITEM or parameter name with optional actual index values
if array for UL_CUSTOM_POPUP_LISTITEM{2}.

childFlag:
childFlag = O: the listitem is a groupitem (default value if not specified).
childFlag = 1: the listitem is a childitem. The parent item is the first groupitem above.

image: file name or index number of the picture stored in the library part. If valid, it is displayed as an icon in the first column of the
listfield in the associated listitem's row.

paramDesc: the visible name of the listitem in the Description column. If left empty, the description is automatically filled up from the
parameter list description of the Library Part. If there is no description there, the name of the parameter is displayed instead.

storeHiddenId, treeDepth: to setup automatic or manual trees.
storeHiddenId = 0, treeDepth = 0: works only with array parameters.

The "treeDepth" parameter is set automatically by the second dimension (number of columns) of the array.
storeHiddenId = 1, treeDepth > 0: works only with single parameters.
There must be n * (1 + treeDepth) values defined (first one for the stored ID and the rest for defining the custom tree).

groupingMethod: grouping method for sorting the tree.
1: does not sort the groups and values under the same parent.

GDL Reference Guide 273

Non-Geometric Scripts

2: sorts the groups and values under the same parent.

=-typel

-type2

él--grnupl
E----valuel
fovalue2
- type2
=-group2
{ E----valuel
i fovalue2
é--grnupS
fovalue3
-values
-values

selectedValDescription: the text written in the field, if empty string the text will be the stored ID of the selected item.

valuei, valuesArrayi: define tree values one-by-one and/or with a one dimension atray.

GDL Reference Guide

274

Non-Geometric Scripts

Example:

UI CUSTOM POPUP_LISTITEM itemID, fieldID, "stParameterName", O, "", "",

1, 3,72, "", ! storeHiddenId, treeDepth, groupingMethod, selectedValDescription
"hiddenID1", "typel", "groupl", "valuel",
"hiddenID2", "typel", "groupl", "value2",
"hiddenID3", "type2", "group2", "valuel",
"hiddenID4", "type2", "group2", "value2",
"hiddenID5", "type2", ", "value3",
"hiddenID6", ", ", "valued",
"hiddenID7", ", ", "valueb5"
Btypel
[=-aroup1
E----\raluel
Lovalue2
[=-group2
E----valuel
Lovalue?
value4
values
UIL_TOOLTIP

UI_BUTTON type, text, x, y, width, height [, id [, url]] [UI_TOOLTIP tooltiptext]
UI_PICT BUTTON type, text, picture reference,

x, y, width, height [, id [, url]] [UI_TOOLTIP tooltiptext]
UI_INFIELD "name", x, y, width, height [, extra parameters ...]

[UI TOOLTIP tooltiptext]

UI_INFIELD{ZT name, x, y, width, height [, extra parameters ...]
[UI_TOOLTIP tooltiptext]
UI_INFIELD{3} name, x, y, width, height [, extra parameters ...]
[UI_TOOLTIP tooltiptext]
UI_INFIELD{4} "name", x, y, width, height [, extra parameters ...]

[UI_TOOLTIP tooltiptext]

GDL Reference Guide 275

Non-Geometric Scripts

UI_CUSTOM POPUP_INFIELD "name", x, y, width, height , extra parameters
[UI_TOOLTIP tooltiptext]
UI_CUSTOM POPUP_INFIELD{2} name, x, y, width, height , extra parameters
[UI_TOOLTIP tooltiptext]
UI_RADIOBUTTON name, value, text, x, y, width, height [UI_TOOLTIP tooltiptext]
UI_OUTFIELD expression, x, y, width, height [, flags] [UI_TOOLTIP tooltiptext]
UI_PICT expression, x, y [, width, height [, mask]] [UI_TOOLTIP tooltiptext]
UI_LISTFIELD fieldID, x, y, width, height [, iconFlag [, description header [, value header]]]
[UI_TOOLTIP tooltiptext]
UI_LISTITEM itemID, fieldID, "name" [, childFlag [, image [, paramDesc]]]
[UI_TOOLTIP tooltiptext]
UI_LISTITEM{2} itemID, fieldID, name [, childFlag [, image [, paramDesc]]]
[UI_TOOLTIP tooltiptext]
UI_CUSTOM POPUP_LISTITEM itemID, fieldID, "name", childFlag , image , paramDesc,
extra parameters
[UI_TOOLTIP tooltiptext]
UI_CUSTOM POPUP LISTITEM{2} itemID, fieldID, name, childFlag , image , paramDesc,
extra parameters ...
[UI_TOOLTIP tooltiptext]

Defines the tooltip for the control on the user interface page. Tooltips are available for buttons, infields, outfields, listfields, listitems and pictures
if they are not disabled by the user in the running context (e.g, in the Help menu of ARCHICAD).

The listfield's tooltip appears in all included listitems if an item has none declared. The own tooltip of the listitem will take effect over the
tooltip of the listfield (if existing) inline.

tooltiptext: the text to display as tooltip for the control.

UI_COLORPICKER

UI_COLORPICKER "redParamName", "greenParamName", "blueParamName", x0, y0 [, width [, height]]

UI_COLORPICKER{2}
UI_COLORPICKER{Z} redParamName, greenParamName, blueParamName, x0, y0 [, width [, height]]

Color picker dialog to set the r, g, b components of a color and store them into the given parameters. These values can later be used in the
LIGHT command.

redParamName, greenParamName, blueParamName: parameter names as string expression for UI_COLORPICKER or
parameter names with optional actual index values if array for UI_ COLORPICKER {2}

x0, yO0: position of the color picket's top left corner.

GDL Reference Guide 276

Non-Geometric Scripts

width, height: width and heightin pixels.
UI_SLIDER

UI_SLIDER "name", x0, y0, width, height [, nSegments [, sliderStyle]]

UI_SLIDER{2}
UI_SLIDER{2} name, x0, y0, width, height [, nSegments [, sliderStyle]]

Generates a slider control for an integer parameter defined with a range. For integer parameters with undefined range lower and upper limit
values are -32768 (minimum signed short) and 32767 (maximum signed short).

name: parameter name as string expression parameter or name with optional actual index values for UI_SLIDER {2}.
x0, yO0: position of the slider.
width, height: slider width and height in pixels. If the width > height the slider is horizontal, in the opposite case it is vertical.

nSegments: optional number of segments on the slider. If 0, no segments are displayed, if omitted or negative, the number of segments
are calculated from the range upper and lower limit values and the step defined for the parameter.

sliderStyle: optional slider style (default is 0)
0: slider points to the bottom (horizontal sliders) or to the right (vertical sliders).
1: slider points to the top (horizontal sliders) or to the left (vertical sliders).

THE FORWARD MIGRATION SCRIPT

If an element is changed completely in a newer library, compatibility can be maintained by defining the migration logic. For more detailed
information, please take a look at the section called “Forward Migration script”.

GDL Reference Guide 277

Non-Geometric Scripts

Example:

actualGUID = FROM GUID

! Subroutines

|
_startID = "AAAA-AAAA-...AAA"
_endID = "BBBB-BBRBB-...BBB"

gosub "migrationstepname FWM"

! Set Migration GUID
|

setmigrationguid actualGUID

end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! en
|

|
! migrationstepname
!

"migrationstepname FWM":
if actualGuid = startID then
newParameter = oldParameter
parameters newParameter = newParameter
actualGuid = endID
endif

return

FROM_GUID is the global variable holding the main ID of the original object which the migration is run on.

In case the script succeeds, the instance gets substituted by the new element with the updated parameters.

SETMIGRATIONGUID
SETMIGRATIONGUID guid

GDL Reference Guide 278

Non-Geometric Scripts

The command tells the running environment, which element will be the matching migration element for the current object. If the returned ID
belongs to the current element, the migration of the object gets complete.

STORED_PAR_VALUE
STORED_PAR VALUE ("oldparname", outputvalue)

Retrieves the value of a parameter, which is present in the migrated object, and present or deleted in the new version object. This command
form is suggested for those parameters present in the new object as well. To get the value of an old array Parameter, the outputvalue parameter
must be initialized as an array (with the dim command).

oldparname: string expression, name of the parameter in the old parameter list.
outputvalue: output variable to store the value of the parameter.

Return value: 1 on success, 0 otherwise (for example, if there is no parameter with that name in the parameter list of the old object). During
checking the script the return value is always 0, because the old Parameters section is not known.

DELETED PAR VALUE
DELETED PAR VALUE ("oldparname", outputvalue)

Retrieves the value of a parameter, which is present in the migrated object, and present or deleted in the new version object. This command
form is suggested for those parameters deleted from the new object. To get the value of an old array Parameter, the outputvalue parameter
must be initialized as an array (with the dim command).

oldparname: string expression, name of the parameter in the old parameter list.
outputvalue: output variable to store the value of the parameter.

Return value: 1 on success, 0 otherwise (for example, if there is no parameter with that name in the parameter list of the old object). During
checking the script the return value is always 0, because the old Parameters section is not known.

THE BACKWARD MIGRATION SCRIPT

Via the Backward Migration script you can define the backward conversion logic converting new object instances to older ones. For more and
detailed information, please take a look at the section called “Backward Migration script”.

GDL Reference Guide 279

Non-Geometric Scripts

Example:

targetGUID = TO GUID

! Subroutines
|

gosub "migrationstepname BWM"

! Set Migration GUID
|

setmigrationguid targetGUID

end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! en
|

! migrationstepname
|

"migrationstepname BWM":
if targetGUID # "" then
bMigrationSuccess = 1
if bMigrationSuccess = 1 then
oldParameter = newParameter
parameters oldParameter = oldParameter
else
targetGuid = ""
endif
endif
return

TO_GUIDis the global variable holding the main ID of the target element in the conversion.
Use the SETMIGRATIONGUID command for setting targetGUID.

GDL Reference Guide 280

Non-Geometric Scripts

NEWPARAMETER
NEWPARAMETER "name", "type" [, diml [, dim2]]

Adds a new parameter to the parameters of a library part in the Backward Migration Script. The parameter creation happens only after the full
interpretation of the script. If a parameter with the given name already exists in the parameters list, an error occurs.

name: string expression, name of the parameter to be created.

type: string expression, type of the parameter. Possible values are:
Integer
Length
Angle
RealNum
LightSwitch
ColorRGB
Intensity
LineType
Material
FillPattern
PenColor
String
Boolean
diml, dim2: dim] is the first dimension of the parameter, O if not set. dim2 is the second dimension of the parameter, 0 if not set.
diml = 0, dim2 = 0: the parameter is a scalar parameter,
diml > 0, dim2 = 0: the parameterisa 1 dimensional array,
diml > 0, dim2 > 0: the parameter is a 2 dimensional array,

Restriction of parameters:
If dim2 > 0, then diml > 0.

GDL Reference Guide 281

Expressions and Functions

EXPRESSIONS AND FUNCTIONS

All parameters of GDL shapes can be the result of calculations. For example, you can define that the height of the cylinder is five times the
radius of the cylinder, or prior to defining a cube, you can move the coordinate system in each direction by half the size of the cube, in order
to have the initial origin in the center of the cube rather than in its lower left corner. To define these calculations, GDL offers a large number
of mathematical tools: exptessions, operators and functions.

EXPRESSIONS

You can write compound expressions in GDL statements. Expressions can be of numerical and string type. They are constants, variables,
parameters or function calls and any combination of these in operators. Round bracket pairs (()) (precedence 1) are used to override the default
precedence of the operators.

Simple type variables can be given numerical and string values, even in the same script, and can be used in numerical and string type expressions
respectively. Operations resulting in strings CANNOT be used directly as macro names in macro calls, or as attribute names in material, fill,
line type or style definitions. Variables given a string value will be treated as such and can be used wherever string values are required. If later in
the script the same variable is given a numerical value, it will be usable in numerical expressions only until it is given a string value again. Where
possible, in the precompilation process the type of the expressions is checked.

GDL supports one and two dimensional arrays. Variables become arrays after a declaration statement, in which their dimensions are specified.

DIM

DIM varl[dim 1], var2[dim 1][dim 2], var3[],

var4[1[], var5[dim 1][1,

var5[][dim 2]
After the DIM keyword there can be any number of variable names separated by commas. varl, var2, ... are the array names, while the numbers
between the brackets represent the dimensions of the array (numerical constants). Variable expressions cannot be used as dimensions. If they
are missing, the array is declared to be dynamic (one or both dimensions).

Library part parameters can also be arrays. Their actual dimensions are specified in the library part dialog. Parameter arrays do not have to be
declared in the script and they are dynamic by default. When referencing the library part using a CALL statement, the actual values of an array
parameter can be an array with arbitrary dimensions.

The elements of the arrays can be referenced anywhere in the script but if they are variables, only after the declaration.

varl[num expr] or varl
var2 [num_exprl] [num_expr2] or varZ[num exprl] or var2

GDL Reference Guide 282

Expressions and Functions

Writing the array name without actual indices means referencing the whole array (or a line of a two-dimensional array) which is accepted in
some cases (CALL, PRINT, LET, PUT, REQUEST, INPUT, OUTPUT, SPLIT statements). For dynamic arrays there is no limitation for the
actual index value. During the interpretation, when a non-existing dynamic array element is given a value, the necessary quantity of memory
is allocated and the missing elements are all set to O (numerical).

Warning! This may cause an unexpected out of memory error in some cases. Each index - even of a possibly wrong, huge value - is considered
valid, since the interpreter is unable to detect the error condition. A non-existing dynamic array element is O (numerical).

Arrays having a fixed dimension are checked for the validity of the actual index on the fixed dimension. Array variables with fixed length cannot
accept dynamic array values in assignments. However, dynamic arrays that are given whole array values will take on those values. This also
applies to some statements where whole array references can be used as return parameters. (REQUEST, INPUT, SPLIT).

Array elements can be used in any numerical or string expression. They can be given string or numerical values.
Indices start with 1, and any numerical expression can be used as an index.

Array elements can be of different simple types (numerical, string, group). The type of the whole array (main type) is the type of its first element
([1] or [1][1]). Parameter and global variable arrays cannot be of mixed type.

VARDIM1

VARDIM1 (expr)

VARDIM2

VARDIM2 (expr)

These functions return as integers the actual dimension values for the (array) expression specified as a parameter. They must be used if you
want to handle correctly all actual elements of a dynamic array or an array parameter. If no element of a dynamic array was previously set, the
return value is 0. For one-dimensional arrays VARDIM2 returns 0.

Example 1: Examples for numeric expressions:

Z

5.5

(+15)

—-X

a* (b+c)

SIN(x+ty) *z

a+r*COS (i*d)

5' 4"

SQOR (x"2 + y*2) / (1 - d)
a + b * sin (alpha)
height * width

GDL Reference Guide 283

Expressions and Functions

Example 2: Examples for string expressions:
"Constant string”

name + STR ("%m", i) + "." + ext
string param <> "Mode 1"

Excample 3: Examples for expressions using array values:

DIM tab[5], tab2[3][4] ! declaration
tab[1l] + tab[2]
tab2([2][3] + A

PRINT tab
DIM f1 [51, v1[], v2[]1I[]
v1l[3] = 3 ' v1[1] = 0, v1[2] = 0, array of 3 elements

v2[2][3] = 23 ! all other elements(2 X 3) = 0
PRINT v1, v2

DIM f1 (5], v1[], v2[][]

FOR 1 = 1 TO VARDIMI (f1)
f1[i] = i

NEXT i

vl = fl

v2 [1] = f1

PRINT vl1, v2

PARVALUE_DESCRIPTION

PARVALUE DESCRIPTION (parname [, indl [, ind2]1])
This function returns the parameter value description string of a numerical parameter specified using the VALUES command statement. If no
description is specified, the returned value is an empty string.

parname: name of the parameter

indl, ind2: actualindices if the parameter is an array.

OPERATORS

The operators below are listed in order of decreasing precedence. The evaluation of an expression begins with the highest precedence operator
and from left to right.

GDL Reference Guide 284

Expressions and Functions

Arithmetical Operators

~ (or *¥*) Power of precedence 2

* Multiplication precedence 3

/ Division precedence 3

MOD (or %) Modulo (temainder of division) x MOD y = x - y * INT (x/y) precedence 3

+ Addition precedence 4

- Subtraction precedence 4
Note

+ (addition) can also be applied to string expressions: the result is the concatenation of the strings. The result of the '/' (Division)
is always a real number, while the result of the other operations depends on the type of the operands: if all operands are integer, the
result will be integer, otherwise real.

Relational Operators

= Equal precedence 5
< Less than precedence 5
> Greater than precedence 5
<= Less than or equal precedence 5
>= Greater than or equal precedence 5
<> (or #) Not equal precedence 5

Note

These operators can be used between any two string expressions also (string comparison is case sensitive). The result is an integer, 1
ot 0. There is not recommended to use the '=" (Equal), '<=' (Less than or equal), ">=" (Greater than or equal), '<>' (or #) (Not equal)
operators with real operands, as these operations can result in precision problems.

GDL Reference Guide 285

Expressions and Functions

Boolean Operators

AND (or &) Logical and precedence 6

OR (or |[) Logical inclusive ot precedence 7

EXOR (or @) Logical exclusive or precedence 8
Note

Boolean operators work with integer numbers. In consequence, 0 means false, while any other number means #xe. The value of a
logical expression is also integer, i.e., 1 for #rue and 0 for false. It is not recommended to use boolean operators with real operands,
as these operations can result in precision problems.

FuNCTIONS

Arithmetical Functions

ABS
ABS (x)
Returns the absolute value of x (integer if x integer, real otherwise).

CEIL
CEIL (x)
Returns the smallest integral value that is not smaller than x (always integer). (e.g., CEIL(1.23) = 2; CEIL (-1.9) = -1).

INT
INT (x)
Returns the integral part of x (always integer). (e.g,, INT(1.23) = 1, INT(-1.23) = -2).

FRA
FRA (x)
Returns the fractional part of x (integer 0 if x integer, real otherwise). (e.g., FRA(1.23) = 0.23, FRA(-1.23) = 0.77).

ROUND_INT
ROUND_INT (x)

GDL Reference Guide 286

Expressions and Functions

Returns the rounded integer part of x. The 1 = ROUND_INT (x)' expression is equivalent with the following script:
IFx < 0.0 THEN1=INT (x - 0.5) ELSE i = INT (x + 0.5)

SGN

SGN (x)

Returns +1 integer if x positive, -1 integer if x negative, otherwise 0 integer.
SQR

SQOR (x)

Returns the square root of x (always real).

Circular Functions
These functions use degrees for arguments (COS, SIN, TAN) and for return values (ACS, ASN, ATN).
ACS

ACS (x)
Returns the arc cosine of x. (-1.0 <= x <= 1.0; 0° <= ACS(x) <= 180°).

ASN

ASN (x)

Returns the arc sine of x. (-1.0 <= x <= 1.0; -90° <= ASN(x) <= 90°).
ATN

ATN (x)

Returns the arc tangent of x. (-90° <= ATN(x) <= 90°).

COS
CoS (x)

Returns the cosine of x.

SIN
SIN (x)
Returns the sine of x.

GDL Reference Guide 287

Expressions and Functions

TAN
TAN (x)
Returns the tangent of x.

PI
PI
Returns Ludolph’s constant. (p = 3.1415926...).

Note: All return values are real.

Transcendental Functions

EXP
EXP (x)
Returns the x th power of e (e = 2.7182818).

LGT
LGT (x)
Returns the base 10 logarithm of x.

LOG
LOG (x)
Returns the natural logarithm of x.

Note: All returned values are real.

Boolean Functions

NOT
NOT (x)
Returns false (=0 integer) if x is true (<>0), and true (=1 integer) if x is false (=0)(logical negation).

Note: Parameter value should be integer.

GDL Reference Guide 288

Expressions and Functions

Statistical Functions
MIN

MIN (x1, x2, ..., xXn)

Returns the smallest of an unlimited number of arguments.
MAX

MAX (x1, x2, ..., xn)

Returns the largest of an unlimited number of arguments.

RND
RND (x)

Returns a random value between 0.0 and x (x > 0.0) always real.

Bit Functions

BITTEST
BITTEST (x, b)
Returns 1 if the b bit of x is set, 0 otherwise.

BITSET
BITSET (x, b [, expr])

expr can be 0 or different, the default value is 1. Sets the b bit of x to 1 or 0 depending on the value of the specified expression, and returns

the result. Parameter value should be integer, returned value is integer.

Special Functions

Special functions (besides global variables) can be used in the script to communicate with the executing program. They either ask the current

state and different preferences settings of the program, or refer to the current environment of the library part. Request calls can also be used

to communicate with GDL extensions.

REQ

REQ (parameter string)

GDL Reference Guide

289

Expressions and Functions

Asks the current state of the program. Its parameter - the question - is a string. The GDL interpreter answers with a numeric value. If it does
not understand the question, the answer is negative.

parameter string: question string, one of the following:
"GDL version": version number of the GDL compilet/interpreter. Warning: it is not the same as the ARCHICAD version.
"Program": code of the program (e.g.,, 1: ARCHICAD),
"Serial number": the serial number of the keyplug,
"Model size": size of the current 3D data structure in bytes,
"Red of material name"
"Green of material name"
"Blue of material name": Defines the given material’s color components in RGB values between 0 and 1,
"Red of pen index"
"Green of pen index"
"Blue of pen index": Defines the given pen’s color components in RGB values between 0 and 1,

"Pen of RGB r g b": Defines the index of the pen closest to the given color. The 1, g and b constants’ values are between 0 and 1.
REQUEST
REQUEST (question name, name | index, variablel [, variable2, ...])

The first parameter represents the question string while the second represents the object of the question (if it exists) and can be of either string
or numeric type (for example, the question can be "Rgb_of_material" and its object the material’s name, or "Rgb_of_pen" and its object the
index of the pen). The other parameters are variable names in which the return values (the answers) are stored.

The return value of the requests is always the number of successfully retrieved values (integer), while the type of the retrieved values is defined
by each request in part. In the case of a badly formulated question or a nonexistent name, the return value will be 0.

For the list of available options see the section called “REQUEST Options”.
IND

IND (MATERIAL, name string)
IND (FILL, name string)

IND (LINE TYPE, name string)
IND (STYLE, name string)
IND (TEXTURE, name string)

This function returns the current index of the material, fill, line type or style and texture attribute. The main use of the resulting number is to
transfer it to a macro that requires the same attribute as the calling macro.

GDL Reference Guide 290

Expressions and Functions

The functions return an attribute index (integer) value. The result is negative for inline definitions (inside the script or from Master_ GDL file)
and positive for global definitions (from the project attributes).

See also the section called “Inline Attribute Definition”.

APPLICATION_QUERY

APPLICATION QUERY (extension name, parameter string, variablel, variablez, ...)

GDL allows a way for the individual applications to provide specific request functions in their context. These query options aren’t defined in
the GDL syntax; consult the GDL developer documentation of the given application for specific options. See also the section called “Application
Query Options”.

LIBRARYGLOBAL

LIBRARYGLOBAL (object name, parameter, value)

Fills value with the current model view option parameter value of the library global object defined by object_name if available. A library global
setting is available if the global object is currently loaded in the library, or was loaded earlier and its setting was saved in the current model
view option combination.

Returns 1 if successful, 0 otherwise.

object name: name of library global object. Must be a string constant. Warning: If string vatiables or parameters are used as object names,
then the 2d and 3d view of objects querying this library global object will not refresh automatically.
parameter: name of requested parameter.

value: (filled with the requested parameter value.

Example:

success = LIBRARYGLOBAL ("MyGlobalOptions", "detLevel2D", det)
if success > 0 then
text2 0, 0, det
else
text2 0, 0, "Not available"
endif

String Functions
STR

STR (numeric expression, length, fractions)

GDL Reference Guide 291

Expressions and Functions

STR (format string, numeric_expression)

The first form of the function creates a string from the current value of the numeric expression. The minimum number for numerical characters
in the string is length, while fractions represents the numbers following the floating point. If the converted value has more than length characters,
it is expanded as required. If it has fewer characters, it is padded on the left (length > 0) or on the right (length < 0).

In the second form, the format_string can either be a variable or a constant. If the format is empty, it is interpreted as meters, with an accuracy
of three decimals (displaying Os).

Restriction of parameters:

length >= -100, length <= 100
fractions <= 20, fractions < length

Example:

a=4.5

b=2.345

TEXT2 0, 2, STR(a, 8, 2) ! 4.50
TEXT2 0, 1, STR(b, 8, 2) ! 2.34

TEXT2 0, 0, STR(a*b, 8, 2) ! 10.55

STR{2}
STR{2} (format string, numeric expression [, extra accuracy string])

Extension of the second form of STR. If the extra accuracy flags are set in the format_string, the STR{2} function will retutn the corresponding
extra accuracy string in the 3rd parameter.
format_string: "%][0 or more flags][field_width][.precision] conv_spec"
flags: (form, mm, cm, e, df, di, sqm, sqcm, sqf, sqi, dd, gt, rad, cum, I, cucm, cumm, cuf, cui, cuy, gal):
(none) : right justify (default),
-1 left justify,
+: explicit plus sign,
(space) : in place of a + sign,
'*0"': extra accuracy Off (default),

'*1': extra accuracy .5,

'*2': extra accuracy .25,

'*3': extraaccuracy.l,

'*4': extra accuracy .01,

'*5": rounding to .5 within displayed decimal range, no returned extra accuracy string, (used for area calculations),

GDL Reference Guide 292

Expressions and Functions

'*6': rounding to .25 within displayed decimal range, no returned extra accuracy string, (used for area calculations),

'*7"': fills the fractional part of numeric_expression into the extra_accuracy_string in case of fi or ffi, while the returned expression of
the function does not contain the fractional parts,

"#': don’tdisplay Os (for m, mm, cm, ffi, fdi, fi, df, di, sqm, sqem, sqf, sqi, dd, ft, rad, cum, 1, cucm, cumm, cuf, cui, cuy, gal),

'0"': display O inches (for ffi, fdi, fi),

! hide 0 decimals (effective only if the '#' flag is not specified) (for m, mm, cm, fdi, df, di, sqm, sqem, sqf, sqi, dd, fr, rad, cum, 1,

cucm, cumm, cuf, cui, cuy, gal),
TAT .

do not change decimal separator and digit grouping characters (if not specified, these characters will be replaced as set in the current
system).
"[1*j1+2*%32+4*33] "' : display O feet and O inches before fractions, effective if the '0' flag is not specified (for ffi, fdi, fi)
j1: display O inches before fractions (1'-0 3/4")
j2: display O inches (1'-0")
j3: display O feet before fractions (0 3/4")
field width: unsigned decimal integer, the minimum number of characters to generate.
precision: unsigned decimal integer, the number of fraction digits to generate.

conv_spec: (conversion specifier):
e: exponential format (meter),
m: meters,
mm: millimeters,
cm: centimeters,
ffi: feet & fractional inches,
fdi: feet & decimal inches,
df: decimal feet,
fi: fractional inches,
di: decimal inches,
pt: points,
for areas:
Sgm: square meters,
sgcm: square centimeters,
sgmm: square millimeters,
sqgf: square feet,
sgi: square inches,

GDL Reference Guide 293

Expressions and Functions

for angles:

dd:

dms :

gr:

rad:

decimal degrees,

degrees, minutes, seconds,
grads,

radians,

SUrv: surveyors unit,

for volumes:

cum:

cubic meters,

1: liters,
cucm: cubic centimeters,

cumm: cubic millimeters,

cuf: cubic feet,

cui: cubic inches,

cuy: cubic yards,

gal: gallons.
Example:
nr = 0.345678
TEXT2 0, 23, STR ("%m", nr) 10.346
TEXT2 0, 22, STR ("%#10.2m", nr) !35
TEXT2 0, 21, STR ("%.4cm", nr) 134.5678
TEXT2 0, 20, STR ("%12.4cm", nr) ! 34.5678
TEXT2 0, 19, STR ("%.6mm", nr) 1345.678000
TEXT2 0, 18, STR ("%+15e", nr) 14+3.456780e-01
TEXT2 0, 17, STR ("%$ffi", nr) rir-2v
TEXT2 0, 16, STR ("%0.16ffi", nr) !1'-1 5/8"
TEXT2 0, 15, STR ("% .3fdi", nr) ! 1'-1.609"
TEXT2 0, 14, STR ("% -10.4df", nr) ! 1.1341"
TEXT2 0, 13, STR ("%0.64fi", nr) !13 39/64"
TEXT2 0, 12, STR ("%+12. 4dl" nr) !'+13.6094"
TEXT2 0, 11, STR ("%#.3sgm", nr) !346
TEXT2 0, 10, STR ("%+sgcm", nr) '+3,456.78
TEXT2 O, 9, STR ("% .2sgmm", nr)! 345,678.00
TEXT2 O, 8, STR ("%-12sqgf", nr) !3.72
TEXT2 0, 7, STR ("%10sgi", nr) ! 535.80
TEXT2 0, 6, STR ("%.2pt", nr) 10.35
GDL Reference Guide 294

Expressions and Functions

alpha = 88.657

TEXT2 0, 5, STR ("%+10.3dd", alpha) !+88.657°
TEXT2 0, 4, STR ("%.ldms", alpha) 188°39"
TEXT2 0, 3, STR ("%.2dms", alpha) 188°39'25"
TEXT2 0, 2, STR ("%10.4gr", alpha) 1 98.5078G
TEXT2 0, 1, STR ("%rad", alpha) '1.55R
TEXT2 0, 0, STR ("%.2surv", alpha) IN 1°20'35"

nr = 1'-0 3/4"

TEXT2 0, -1, STR ("%[1].16ffi", nr) !1'-0 3/4"
nr = 1'-0"

TEXT2 0, -2, STR ("%[5].16ffi"™, nr) !'1°'

nr = 0 3/4"

TEXT2 0, -3, STR ("%$#[7].16ffi", nr) !0 3/4"

nr = 0.34278
TEXT2 0, 0, STR ("%*5 .4m", nr) 10.3430

! split to integral and fractional parts
extra accuracy string = ""
nr = 1'-0 3/47

TEXT2 0, -3, STR{2} ("%*7.16ffi", nr, extra accuracy string)

TEXT2 0, -4, extra accuracy string 13/4"

SPLIT

SPLIT (string, format, wvariablel [, variableZ2,

variablen])

Splits the string parameter according to the format in one or more numeric or string parts. The split process stops when the first non-matching

part is encountered. Returns the number of successfully read values (integer).

string: the string to be split.

format: anycombination of constant strings, %s, %on and %" n -s. Parts in the string must fit the constant strings, %s denotes any string

value delimited by spaces ot tabs, while %n or %"n denotes any numeric value. If the '™ flag is present, cutrent system settings for decimal

separator and digit grouping characters are taken into consideration when matching the actual numerical value.

variablei: names of the variables to store the split string parts.

GDL Reference Guide

295

Expressions and Functions

Example:
ss = "3 pieces 2x5 beam"
n = SPLIT (ss, "%n pieces %nx%n %s", num, ssl, sizel, ss2, size2, name)
IF n = 6 THEN
PRINT num, ssl, sizel, ss2, size2, name ! 3 pieces 2 x 5 beam
ELSE
PRINT "ERROR"
ENDIF
STW

STW (string expression)
Returns the (real) width of the string in millimeters displayed in the current style. The width in meters, at current scale, is STW

(string_exptession) / 1000 * GLOB_SCALE.

DEFINE STYLE "own" "Gabriola", 180000 / GLOB SCALE, 1, O
SET STYLE "own"

string = "abcd"

width = STW (string) / 1000 * GLOB_ SCALE

n = REQUEST ("Height of style", "own", height)

height = height / 1000 * GLOB SCALE

TEXT2 0,0, string -

RECT2 0,0, width, -height

Example:

STRLEN

STRLEN (string expression)
Returns the (integer) length of the string (the number of characters)

GDL Reference Guide 296

Expressions and Functions

STRSTR

STRSTR (string expressionl, string expression2[, case insensitivity])
Returns the (integer) position of the first appearance of the second string in the first string. If the first string doesn’t contain the second one,
the function returns 0.
case_insensitivity:
0 or not set: Case sensitive
1: Case insensitive

Example 1:

szFormat = ""

n = REQUEST ("Linear dimension", "", szFormat)
unit = ""

IF STRSTR (szFormat, "m") > 0 THEN unit = "m"
IF STRSTR (szFormat, "mm") > 0 THEN unit = "mm"
IF STRSTR (szFormat, "cm") > 0 THEN unit = "cm"
TEXT2 0, 0, STR (szFormat, a) + " " + unit !'1.00 m
Example 2:

STRSTR ("abcdefg", "BCdEf") = 0

STRSTR ("abcdefg", "BCdEf", 0) = 0

STRSTR ("abcdefg", "BCdEf", 1) = 2

STRSUB

STRSUB (string expression, start position, characters number)

Returns a substring of the string parameter that begins at the position given by the start_position parameter and its length is characters_number
characters.

Example:

string = "Flowers.jpeg"

len = STRLEN (string)

iDotPos = STRSTR (string, ".")

TEXT2 0, -1, STRSUB (string, 1, iDotPos - 1) !Flowers
TEXT2 0, -2, STRSUB (string, len - 4, 5) !'.jpeg

GDL Reference Guide 297

Expressions and Functions

STRTOUPPER
STRTOUPPER (string expression)

Returns a string converted to uppercase.

Example:

_oldString = "flower"

newString = STRTOUPPER (oldString)
STRTOLOWER

STRTOLOWER (string expression)

Returns a string converted to lowercase.

Example:
_oldString = "FLOWER"
_newString = STRTOLOWER (_oldString)

! newString will be "FLOWER"

! newString will be "flower"

GDL Reference Guide

298

Control Statements

CONTROL STATEMENTS

This chapter reviews the GDL commands available for controlling loops and subroutines in scripts and introduces the concept of buffer manipulation designed to store
parameter values for further use. 1t also explains how to use objects as macro calls and how to display calcnlated expressions on screen.

FrLow CONTROL STATEMENTS
FOR - TO - NEXT

FOR variable name = initial value TO end value [STEP step value] NEXT variable name
FOR is the first statement of a FOR loop.
NEXT is the last statement of a FOR loop.

The loop variable varies from the initial_value to the end_value by the step_value increment (or decrement) in each execution of the body of
the loop (statements between the FOR and NEXT statements). If the loop variable exceeds the value of the end_value, the program executes
the statement following the NEXT statement.

If the STEP keyword and the step_value are missing, the step is assumed to be 1.

Note: Changing the step_value during the execution of the loop has no effect.

A global variable is not allowed as a loop control variable.

Example 1:

FOR i=1 TO 10 STEP 2
PRINT 1
NEXT i

GDL Reference Guide 299

Control Statements

Example 2:
! The two program fragments below are equivalent:

I 1st

a=>

1:
IF ¢ >0 AND a > d OR ¢ < 0 AND a < d THEN 2
PRINT a

a=a+c

GOTO 1

! 2nd
2:
FOR a = b TO d STEP c
PRINT a
NEXT a
The above example shows that step_value = 0 causes an infinite loop.

Only one NEXT statement is allowed after a FOR statement. You can exit the loop with the GOTO command and to return after leaving,
but you cannot enter a loop skipping the FOR statement.

DO - WHILE

DO [statmentl
statement?2
statementn]

WHILE condition
The statements between the keywords are executed as long as the condition is true.

The condition is checked after each execution of the statements.

WHILE - ENDWHILE

WHILE condition DO
[statementl
statement?2

statementn]
ENDWHILE

GDL Reference Guide 300

Control Statements

The statements between the keywords are executed as long as the condition is true.

The condition is checked before each execution of the statements.

REPEAT - UNTIL

REPEAT [statementl
statement?2

statementn]
UNTIL condition
The statements between the keywords are executed until the condition becomes true.

The condition is checked after each execution of the statements.

GDL Reference Guide 301

Control Statements

Example: The following four sequences of GDL commands are equivalent

! 1st

FOR i = 1 TO 5 STEP
BRICK 0.5, 0.5, 0.1

=

ADDZ 0.3
NEXT i
! 2nd
i =1
DO
BRICK 0.5, 0.5, 0.1
ADDZ 0.3
i=1i+4+1

WHILE i <=5

! 3rd
i=1
WHILE i <= 5 DO
BRICK 0.5, 0.5, 0.1
ADDZ 0.3
i =1+ 1
ENDWHILE

! 4th

i=1

REPEAT
BRICK 0.5, 0.5, 0.1
ADDZ 0.3
1 =

i+ 1
UNTIL i > 5

IF - GOTO

IF condition THEN label
IF condition GOTO label
IF condition GOSUB label

Conditional jump statement. If the value of the condition expression is 0 (logical 'false"), the command has no effect, otherwise execution

continues at the label. THEN, GOTO or THEN GOTO are equivalent in this context.

GDL Reference Guide

302

Control Statements

Example:

IF a THEN 28

IF i > j GOTO 200+i*7j
IF 1 > 0 GOSUB 9000

IF - THEN - ELSE - ENDIF

IF condition THEN statement [ELSE statement]
IF condition THEN

[statementl

statement?2

statementn]
[ELSE

statementn+1l

statementn+2

statementn+m]
ENDIF
If you wtite only one command after keywords THEN and/or ELSE in the same row, there is no need for ENDIE. A command after THEN
or ELSE in the same row means a definite ENDIFE

If there is a new row after THEN, the successive commands (all of them until the keyword ELSE or ENDIF) will only be executed if the
expression in the condition is true (other than zero). Otherwise, the commands following ELSE will be carried out. If the ELSE keyword is
absent, the commands after ENDIF will be carried out.

GDL Reference Guide 303

Control Statements

Example:

IF a = b THEN height = 5 ELSE height = 7
IF needDoors THEN
CALL "door macro" PARAMETERS
ADDX a N
ENDIF
IF simple THEN
HOTSPOT2 0, O
RECT2 a, 0, 0, b
ELSE PROJECT2 3, 270, 1
IF name = "Sphere" THEN
ADDY b
SPHERE 1
ELSE
ROTX 90
TEXT 0.002, 0, name
ENDIF

GOTO
GOTO label

Unconditional jump statement. The program executes a branch to the statement denoted by the value of the label (numerical or string). Variable
label expressions can slow down interpretation due to runtime jumping address determination.

Excample:
GOTO K+2

GOSUB

GOSUB label

Internal subroutine call where the label is the entry point of the subroutine. Label value can be any numerical or string expression. Variable
label expressions can slow down interpretation due to runtime jumping address determination.

RETURN
RETURN

GDL Reference Guide 304

Control Statements

Return from an internal subroutine.

END / EXIT

END [v1, V2, ..., vn]
EXIT [vl, Vv2, ..., vn]

End of the current GDL script. The program terminates or returns to the level above. It is possible to use several ENDs or EXITs in a GDL
file. If the optional list of values is specified, the current script will pass these return values to its caller.

See the description of receiving returned parameters at the CALL command.

BREAKPOINT
BREAKPOINT expression

With this command, you can specify a breakpoint in the GDL script. The GDL debugger will stop at this command if the value of the parameter
(a numeric expression) is true (1) and the Enable Breakpoints option of the debugger is checked. In normal execution mode, the GDL interpreter
simply steps over this command.

PARAMETER BUFFER MANIPULATION

The parameter buffer is a built-in data structure that may be used if some values (coordinates, for example) change after a definite rule that can
be described using a mathematical expression. This is useful if, for instance, you want to store the current values of your variables.

| | | | | ‘ PUT ’ | | | | | % NSP = NSP+1

The parameter buffer is an infinitely long array in which you can store numeric values using the PUT command. PUT stores the given values
at the end of the buffer. These values can later be used (by the GET and USE commands) in the order in which they were entered (i.c., the
first stored value will be the first one used). A GET(n) or USE(n) command is equivalent with n values separated by commas. This way, they
can be used in any GDL parameter list where n values are needed.

%,

GDL Reference Guide 305

Control Statements

%
2 L L L use L] [[1]] nspense

PUT

PUT expression [, expression, ...]
Store the given values in the given order in the internal parameter buffer.

GET
GET (n)

Use the next n values from the internal parameter buffer and then disregard them.

USE

USE (n)

Use the next n values from the internal parameter buffer without deleting them. Following USE and GET functions can use the same parameter
sequence.

NSP
NSP

Returns the number of stored parameters in the internal buffer.

GDL Reference Guide 306

Control Statements

Example: Using the parameter buffer:

r=2: b=6: c=4: d=10
n=12

s=180/n
FOR t=0 TO 180 STEP s
PUT r+r*COS(T), c-r*SIN(t), 1
NEXT t
FOR i=1 TO 2
EXTRUDE 3+NSP/3, 0,0,d, 1+16,
0, b, 0,
2*r, b, 0,
USE (NSP) ,
0, b, 0
MULY -1 7
NEXT i
DEL 1
ADDZ d
REVOLVE 3+NSP/3, 180, O,
0, b, 0,
2*r, b, 0,
GET (NSP),
0, b, 0

The full description:

GDL Reference Guide 307

Control Statements

r=2: b=6: c=4: d=10
FOR i=1 TO 2
EXTRUDE 16, 0,0,d, 1+1¢,

0, b, 0,
2*r, b, 0,
2*r, ¢, 1,
r+r*C0S(15), c¢-r*SIN(15), 1,
r+r*C0s(30), c-r*SIN(30), 1,
r+r*C0S (45), c-r*SIN(45), 1,
r+r*C0S (60), c-r*SIN(50), 1,
r+r*C0OS(75), c-r*SIN(75), 1,
r+r*C0S(90), c-r*SIN(90), 1,
r+r*C0S (105), c-r*SIN(105), 1,
r+r*C0S(120), c-r*SIN(120), 1,
r+r*C0S (135), c-r*SIN(135), 1,
r+r*C0S (150), c-r*SIN(150), 1,
R+R*COS (165), c-r*SIN(1le65), 1,
0, b, 1,
0, b, 0
MULY -1
NEXT i
DEL 1

GDL Reference Guide 308

Control Statements

ADDZ d

REVOLVE 16, 180, O,
0, b, 0,
2*r, b, 0,
2*r, ¢, 1,
r+r*C0S(15), c-r*SIN(15), 1,
r+r*C0S (30), c-r*SIN(30), 1,
r+r*COS (45), c-r*SIN(45), 1,
r+r*C0S(60), c-r*SIN(50), 1,
r+r*C0S(75), c-r*SIN(75), 1,
r+r*C0S (90), c-r*SIN(90), 1,
r+r*C0S (105), c-r*SIN(105), 1,
r+r*C0S(120), c-r*SIN(120), 1,
r+r*C0S(135), c-r*SIN(135), 1,
r+r*C0S (150), c-r*SIN(150), 1,
r+r*C0S(165), c-r*SIN(1l65), 1,
0, b, 1,
0, b, 0

MACRO OBJECTS

Although the 3D objects you may need can always be broken down into complex or primitive elements, sometimes it is desirable to define
these complex elements specifically for certain applications. These individually defined elements are called macros. A GDL macro has its own
environment which depends on its calling order. The current values of the MODEL, RADIUS, RESOL, TOLER, PEN, LINE TYPE,
MATERIAL, FILL, STYLE, SHADOW options and the current transformation are all valid in the macro. You can use or modify them,
but the modifications will only have an effect locally. They do not take effect on the level the macro was called from. Giving parameters to a
macro call means an implicit value assignment on the macro’s level. The parameters A and B are generally used for resizing objects.

CALL

CALL macro_name_ string [,]
PARAMETERS [ALL] [namel=valuel, ..., namen=valuen][[,]
RETURNED_ PARAMETERS rl, r2, ...]

macro_name_string: string, the name of an existing library part

Macro names cannot be longer than 31 characters. Macro names can be string constants, string variables or parameters. String operations
cannot be used with a macro call as a macro name. Warning: If string variables or parameters are used as macro names, the called macro
may not be included in the archive project. To let GDL know about the dependency, use the FILE_DEPENDENCE command for each

GDL Reference Guide 309

Control Statements

My~ 7905 <

possible macro name. The macro name must be put between quotation marks (",)',",”,”,“,9), unless it matches the definition of identifiers,
i.e., it begins with a letter or a '_" or '~' character and contains only letters, numbers and the '_"and '~' characters. Otherwise, the quotation
marks used in the CALL command must be the same at the beginning and at the end, and should be different from any character of the
macro name. Macro name itself also can be used as a command, without the CALL keyword.

PARAMETERS : the actual parameter list of the macro can follow

The parameter names of the called macro can be listed in any sequence, with both an '='" sign and an actual value for each. You can use string
type expressions here, but only give a string value to string type parameters of the called macro. Array parameters have to be given full array
values. If a parameter name in the parameter list cannot be found in the called macro, you will get an error message. Parameters of the called
macro that are not listed in the macro call will be given their original default values as defined in the library part called as a macro.

ALL: all parameters of the caller are passed to the macro

If this keyword is present, there is no need to specify the parameters one by one. For a parameter of the macro which cannot be found in
the caller, the default value will be used. If parameter values are specified one by one, they will override the values coming from the caller
or parameters of the called macro left to be default.

RETURNED PARAMETERS: a variable list can follow to collect the returned parameters of the macro

At the caller’s side, returned values can be collected using the RETURNED_PARAMETERS keyword followed by a variable list. The returned
values will be stored in these vatiables in the order they are returned in the called macro. The number and the type of the variables specified
in the caller and those returned in the macro must match. If there are more variables specified in the caller, they will be set to 0 integers. Type
compatibility is not checked: the type of the variables specified in the caller will be set to the type of the returned values. If one of the variables
in the caller is a dynamic atray, all subsequent values will be stored in it. See #he syntax of returning parameters at the END | EXIT command.

CALL macro_name_ string [,] PARAMETERS
valuel or DEFAULT [, ..., valuen or DEFAULT]

This form of macro call can be used for compatibility with previous versions. Using this syntax the actual parameter values have to be specified
one by one in the order they are present in the called library part, no value can be missed, except from the end of the list. Using the DEFAULT
keyword in place of a parameter actual value means that the actual value will be the default value stored in the library part. For the missing
values defaults will be used automatically (the number of actual values n can be smaller than the number of parameters). When interpreting this
kind of macro call there is no need to find the parameters by name to assign them the actual value, so even though it is more uncomfortable
to use than the previous ones, a better performance can be achieved.

CALL macro name string [, parameter list]

This form of macro call can be used for compatibility with previous versions. Can be used with simple GDL text files as well as any library
part, on the condition that its parameter list contains only single-letter numerical parameters (A ... Z). No string type expressions or arrays are

GDL Reference Guide 310

Control Statements

allowed with this method. The parameter list is a list of simple numerical values: the value of parameter A will be the first value in the list, the
value of parameter B will be the second value, and so on. If there are less than A ... Z values specified in the parameter list, for the missing
values 0 will be used automatically. If the (library part) macro does not have a single-letter parameter corresponding to the value, interpretation
will continue by skipping this value, but you will get a warning from the program.

Excample:
CALL "leg" 2, , 5! A =2, B=0, C=51leg 2, , 5
CALL "door-1" PARAMETERS height = 2, a = 25.5,
name = "Director"
CALL "door-1" PARAMETERS ! use parameter default values

OUuTPUT IN AN ALERT BOX OR REPORT WINDOW
PRINT

PRINT expression [, expression, ...]

Wrrites all of its arguments in a dialog box or the Report Window, depending on Work Environment (see the section called “GDL warnings”).
Arguments can be strings or numeric expressions of any number in any sequence, separated by commas.

Example:

PRINT "loop-variable:", i

PRINT j, k-3*1

PRINT "Beginning of interpretation”

PRINT a * SIN (alpha) + b * COS (alpha)

PRINT "Parameter wvalues: ", "a =", a, ", b=", D
PRINT name + STR ("%m", i) + "." + ext

FILE OPERATIONS

The following keywords allow you to open external files for teading/writing and to manipulate them by putting/getting values from/to GDL
sctipts. This process necessatily involves using special Add-On extensions. Text files can be handled by the section called “GDL Text I/O Add-
On”. Add-Ons for other file types can be developed by third parties.

See also the section called “GDL Text I/ O Add-On”.
OPEN

OPEN (filter, filename, parameter string)

GDL Reference Guide 311

Control Statements

Opens a file as directed. Its return value is a positive integer that will identify the specific file, -2 if the add-on is missing, -1 if the file is missing;
If positive, this value, the channel number, will be the file’s reference number in succeeding instances. To include the referenced file in the
archive project, use the FILE_ DEPENDENCE command with the file name.

filter: string, the name of an existing extension.
filename: string, the name of the file.

parameter string: string, it contains the specific separation characters of the operational extension and the mode of opening, Its
contents are interpreted by the extension.

INPUT
INPUT (channel, recordID, fieldID, variablel [, variable2, ...])

The number of given parameters defines the number of values from the starting position read from the file identified by the channel value.
The parameter list must contain at least one value. This function puts the read values into the parameters as ordered. These values can be of
numeric or string type, independent of the parameter type defined for storage.

The return value is the number of the successfully read values. When encountering an end of file character, -1 is returned.

recordID, fieldID: the string or numeric type starting position of the reading, its contents are interpreted by the extension.

VARTYPE
VARTYPE (expression)
Returns 1 if the type of the expression is numerical, 2 if it is a string,

Useful when reading values in variables with the INPUT command, which can change the type of the variables according to the current values.
The type of these variables is not checked during the compilation process.

OUTPUT
OUTPUT channel, recordID, fieldID, expressionl [, expression2, ...]

Writes as many values into the file identified by the channel value from the given position as there are defined expressions. There has to be at
least one expression. The type of values is the same as those of the expressions.

recordID, fieldID: the string or numeric type starting position of the writing; its contents are interpreted by the extension.

CLOSE channel
Closes the file identified by the channel value.

GDL Reference Guide 312

Control Statements

USING DETERMINISTIC ADD-ONS

The following keywords allow you to call GDL add-ons which provide a deterministic function, i.e. the result of a given operation depends
on the specified parameters only. This process necessarily involves using special Add-On extensions. For example polygon operations can be
executed via the PolyOperations add-on. Add-Ons for other operations can be developed by third parties.

See also the section called “Polygon Operations Extension”.

INITADDONSCOPE
INITADDONSCOPE (extension, parameter stringl, parameter string2)

Opens a channel as directed. Its return value is a positive integer that will identify the specific connection. This value, the channel number, will
be the connection’s reference number in succeeding instances.

extension: string, the name of an existing extension.
parameter stringl: string, its contents are interpreted by the extension.

parameter string2: string, its contents are interpreted by the extension.

PREPAREFUNCTION

PREPAREFUNCTION channel, function name, expressionl [, expression2, ...]

Sets some values in the add-on as a preparation step for calling a later function.

function_name: the string or numeric identifier of the function to be called; its contents are interpreted by the extension.

expression: parameters to be passed for the preparation step.

CALLFUNCTION

CALLFUNCTION (channel, function name, parameter, variablel [, variable2, ...])

The function named function_name in the add-on specified by channel is called. The parameter list must contain at least one value. This function
puts the returned values into the parameters as ordered. The return value is the number of the successfully set values.

channel: channel value, used to identify the connection.
function_name: the string or numeric identifier of the function to be called; its contents are interpreted by the extension.
parameter: input parameter; its contents are interpreted by the extension.

variablei: output parameter.

GDL Reference Guide 313

Control Statements

CLOSEADDONSCOPE
CLOSEADDONSCOPE channel
Closes the connection identified by the channel value.

GDL Reference Guide 314

Miscellaneous

MISCELLANEOUS

GDL can also handle a number of operations on external files through special Add-On applications. The commands used to achieve this are described in this chapter
and illustrated with an example.

GLOBAL VARIABLES

The global variables make it possible to store special values of the model. This allows you to access geometric information about the environment
of the GDL macro. For example, you can access the wall parameters when defining a window which has to fit into the wall. Global variables
are not stacked during macro calls.

For doors, windows, labels and property library parts there is one more possibility to communicate with ARCHICAD through fix named,
optional parameters. These parameters, if present on the library part’s parameter list, are set by ARCHICAD. See he list of fixc named parameters
and more details in the section called “Fix named optional parameters”.

Parameter script compatibility

View or project dependent global variables should not be used in parameter scripts (or master scripts run as parameter script) to avoid
the parameter script run occasions and the resulting parameter values becoming context dependent, inconsistent within the planfile.
Compatibility up to ARCHICAD 19: Such globals accidentally used in parameter script generate GDL. warnings.

Compatibility starting from ARCHICAD 20: Such globals used in parameter script generate GDL warnings, and will contain a static defanlt value only (type-
matching).

Legend
(V) works without restriction
' works (with additional warning)
(—) contains dummy default value (with additional warning)

GDL Reference Guide 315

Miscellaneous

Table 6. Parameter script compatibility of view dependent globals

Ta

Compatibility/Default in Parameter Script ARCHICAD 18 | ARCHICAD 19 ARCHICAD 20
Parameter Script Parameter Script Parameter Script Default
GLOB_CONTEXT (/) ' (=) 2
GLOB_VIEW_TYPE -] 1 -
GLOB_SCALE (/) ' (=) 100
GLOB_DRAWING_BGD_PEN (V) ' (=) 19
GLOB_FRAME_NR (/) ' (=) -1
ble 7. Parameter script compatibility of view dependent globals
Compatibility/Default in Parameter Script ARCHICAD 18 | ARCHICAD 19 ARCHICAD 20
Parameter Script Parameter Script Parameter Script Default
GLOB_FIRST_FRAME (V) ' (=) 0
GLOB_LAST_FRAME (/) ' (=) 0
GLOB_EYEPOS_X (V) ' (=) -5.0
GLOB_EYEPOS_Y (/) ' (=) -5.0
GLOB_EYEPOS_Z (V) ' e 1.7
GLOB_TARGPOS_X (/) ' (=) 0.0
GLOB_TARGPOS_Y (/) ' (=) 0.0
GLOB_TARGPOS_Z (V) ' (=) 1.7

GDL Reference Guide

316

Miscellaneous

Table 8. Parameter script compatibility of project dependent globals

Compatibility/Default in Parameter Script ARCHICAD 18 | ARCHICAD 19 ARCHICAD 20
Parameter Script Parameter Script Parameter Script Default
GLOB_NORTH_DIR (/) ' (=) 90
GLOB_PROJECT_LONGITUDE - . (=) 0
GLOB_PROJECT_LATITUDE (/) ' (=) 0
GLOB_PROJECT_ALTITUDE (/] . (=) 0
GLOB_PROJECT_DATE (/) ' (=) [0; 05 05 05 05 0]
GLOB_WORLD_ORIGO_OFFSET_X (/] ' (=) 0
GLOB_WORLD_ORIGO_OFFSET_Y (/) ' (=) 0
GLOB_CUTPLANES_INFO (/] ' (=) [1.0; 3.0;-0.1; -0.1]

GDL Reference Guide

317

Miscellaneous

Table 9. Parameter script compatibility of project dependent globals

Compatibility/Default in Parameter Script ARCHICAD 18 ARCHICAD 19 ARCHICAD 20
Parameter Script Parameter Script Parameter Script Default
GLOB_STRUCTURE_DISPLAY o ' Q 0
GLOB_ISSUE_SCHEME o o o -
GLOB_CHANGE_SCHEME o o 0 -
LAYOUT_REVISION_HISTORY o o o -
LAYOUT_CHANGE_HISTORY o o 0 -
LAYOUT_CURRENTREVISION_OPEN 0 ' Q FALSE
Table 10. Parameter script compatibility of project dependent globals
Compatibility/Default in Parameter Script ARCHICAD 18 ARCHICAD 19 ARCHICAD 20
Parameter Script Parameter Script Parameter Script Default
GLOB_HSTORY_ELEV o ' Q 0
GLOB_HSTORY_HEIGHT 0 ' Q 3.1
GLOB_CSTORY_ELEV o ' Q 0.0
GLOB_CSTORY_HEIGHT 0 ' Q 3.1
GLOB_CH_STORY_DIST o ' Q 0.0
GLOB_SUN_AZIMUTH 0 ' Q 240.0
GLOB_SUN_ALTITUDE o . ° 35.0

GDL Reference Guide

318

Miscellaneous

General environment information
GLOB_SCRIPT_TYPE type of current script

- properties script

- 2D seript

- 3D seript

- user interface script
- parameter script

- master script

.
NS R N~

- forward migration script
* 8 - backward migration script

GLOB_VIEW_TYPE type of current view (view dependent, do not use in parameter script).

* 2-2D (Floor Plan)
e 3-3D

o 4 - Section

e 5 - Elevation

* 6 - 3D Document

e 7 - Detail

e &8 - Layout

* 9 - Calenlation

Use the exact needed values. Using ranges are not recommended due to possible future value extensions.

GLOB_PREVIEW_MODE type of current preview (view dependent, do not use in parameter script)
* 0-None
* 1 - Dialog
e 2- Listing

Use the exact needed values. Using ranges are not recommended due to possible future value extensions.

GLOB_FEEDBACK_MODE indicates editing in progtress (view dependent, do not use in parameter sctipt)
0 - off, 1 - editing feedback mode

GLOB_SEO_TOOL_MODE indicates solid element operations in progtress (view dependent, do not use in parameter script)
0 - off, 1 - solid element operations mode

GDL Reference Guide 319

Miscellaneous

GLOB_SCALE drawing scale (view dependent, do not use in parameter script)
according to the current window
GLOB_DRAWING_BGD_PEN pen of the drawing background color (view dependent, do not use in parameter script)
the best matching (printable) pen from the current palette to the backgronnd color of the current window
GLOB_NORTH_DIR project North direction (project dependent, do not use in parameter script)
relative to the defanlt project coordinate system according to the settings made in the Project Location dialog
GLOB_PROJECT_LONGITUDE project longitude (project dependent, do not use in parameter script)
GLOB_PROJECT_LATITUDE project latitude (project dependent, do not use in parameter script)
GLOB_PROJECT_ALTITUDE project altitude (project dependent, do not use in parameter script)

the geographical coordinates of the project origin according to the settings specified in the Project Location dialog
GLOB_PROJECT_DATE project date (project dependent, do not use in parameter sctipt)

array of the following six values: 1 - year, 2 - month, 3 - day, 4 - hour, 5 - minute, 6 - second. This variable contains the project's current date and is only set in the EcoDesigner
STAR™ add-on (in other cases all values are set to 0). The value of this variable is modified by the add-on when running the solar analysis routines to allow certain GDL objects
(for excample deciduous trees) to be represented differently at different times of the year.

GLOB_WORLD_ORIGO_OFFSET_X (project dependent, do not use in parameter script)
GLOB_WORLD_ORIGO_OFFSET_Y (project dependent, do not use in parameter sctipt)
Position of the project origin relative to the world origin. See 1llustrating the nsage of the GLOB_WORLD_ORIGO_... globals.
GLOB_MODPAR_NAME name of the last modified parameter
in the settings dialog or library part editor, including parameters modified through editable hotspots.
GLOB_UI_BUTTON_ID id of the button pushed on the Ul page
or O, if the last action was not the push of a button with id.
GLOB_CUTPLANES_INFO (project dependent, do not use in parameter script)

array of 4 length values: 1 - cutplane beight, 2 - cutplane top level, 3 - cutplane bottom level, 4 - absolute display limit, in the library part’s local coordinate system. See details in
ARCHICAD Set Floor Plan Cutplane dialog.

GLOB_STRUCTURE_DISPLAY structure display detail (project dependent, do not use in parameter script)

informs about the partial structure display option settings (integer): O - entire structure, 1 - core only, 2 - without finishes

GDL Reference Guide 320

Miscellaneous

GLOB_ISSUE_SCHEME list of custom data defined in the Issue Scheme

Available in all contexct. 2-row string array, containing the names of fields defined in the Issue Scheme (first row), with the corresponding GUIDs (second row). The first five columns
are fixed: Revision 1D, Issue ID, Issue Name, Issue Date, Issued by.

For example:
Revision ID Issue ID Issue Name Issue Date Issued By Recipient Status
{RerIdGUID} {IssueldGUID} | {IssueNameGUID} | {IssueDateGUID } {IssuedByGUID } {Custom1 GUID} {Custom2GUID}

LAYOUT_REVISION_HISTORY

Available in Layout context only. String array, containing 1 row per Revision, in the same structure as GLOB_ISSUE_SCHEME. The first five columns are fixed: Revision
ID, Issue ID, Issue Namse, Issue Date, Issued by.

list of the current Layout's Revision History

For example:
01 7 First Issue 2013-06-30 user? Everyone SD
02 3 General Update 2013-07-31 user2 Mechanical DD
03 5 Structural Update 2013-08-31 user? Structural DD

GLOB_CHANGE_SCHEME

Available in all context. 2-row string array, containing the names of fields defined in the Change Scheme (first row), with the corresponding GUIDs (second row). The first five
columns are fixed: Revision 1D, Change ID, Change Name, Last Modified Date, Last Modified by.

list of custom data defined in the Change Scheme

For example:

Revision ID | Change ID Change Last Modified Last Modified By |Created by Approved by
Description

(RaldGUID} | {CHAGUID}Y | {ChDeseGUID} (ModiTimeGUID} | {ModiByGUID} {CustomIGUID}Y | {Custom2GUID}}

GDL Reference Guide

Miscellaneous

LAYOUT_CHANGE_HISTORY list of all the Changes appearing in the current Layout's Revision History

Available in Layout context only. String array, containing 1 row per Change, in the same structure as GLOB_CHANGE_SCHEME. The first five columns are fixed: Revision
ID, Change 1D, Change Name, Last Modified Date, Iast Modified by.

For example:

2 Ch-13 Kitchen 2013-07-13 userl Abrchitect 1 Lead Architect 1

2 Ch-15 Ventillation 2013-07-16 user2 Architect 2 Lead Architect 1

3 Ch-18 Structural Col. 2013-08-03 user2 Architect 1 Lead Architect 2

3 Ch-19 Truss Sections 2013-08-12 userl Architect 3 Lead Architect 2

B Ch-23 Door Numbering 2013-10-01 user3 Architect 2 Lead Architect 1
LAYOUT_CURRENTREVISION_OPEN Work in Progtess state of the current Layout (project dependent, do not use in parameter script)

Available in Layout context only. O - current Layout has no open Revision, 1 - current Layout has an open Revision (it is a Work in Progress Layout)

Story information

GLOB_HSTORY_ELEV clevation of the home story (project dependent, do not use in parameter script)
home story is the one the object is placed on
GLOB_HSTORY_HEIGHT height of the home story (project dependent, do not use in parameter script)
home story is the one the object is placed on
GLOB_CSTORY_ELEV clevation of the current story (project dependent, do not use in parameter script)
current story is the one currently shown in the Floor Plan window
GLOB_CSTORY_HEIGHT height of the current story (project dependent, do not use in parameter script)
current story is the one currently shown in the Floor Plan window
GLOB_CH_STORY_DIST relative position of the current story to the home story (project dependent, do not use in parameter
script)

current story is the one currently shown in the Floor Plan window

GDL Reference Guide 322

Miscellaneous

Fly-through information

GLOB_FRAME_NR

valid only for animation, -1 for still images

current frame number in animation (view dependent, do not use in parameter script)

GLOB_FIRST_FRAME

valid only for animation, O for still images

first frame index in fly-through (view dependent, do not use in parameter script)

GLOB_LAST_FRAME

valid only for animation, O for still images

last frame index in fly-through (view dependent, do not use in parameter script)

GLOB_EYEPOS_X

current camera position (x) (view dependent, do not use in parameter script)

valid only in perspective projection for both animation and still images

GLOB_EYEPOS_Y

current camera position (y) (view dependent, do not use in parameter script)

valid only in perspective projection for both animation and still images

GLOB_EYEPOS_Z

current camera position (z) (view dependent, do not use in parameter script)

valid only in perspective projection for both animation and still images

GLOB_TARGPOS_X

current target position (x) (view dependent, do not use in parameter script)

valid only in perspective projection for both animation and still images

GLOB_TARGPOS_Y

current target position (y) (view dependent, do not use in parameter script)

valid only in perspective projection for both animation and still images

GLOB_TARGPOS_Z

current target position (z) (view dependent, do not use in parameter script)

valid only in perspective projection for both animation and still images

GLOB_SUN_AZIMUTH

according to the settings in the Sun... dialog box

sun azimuth (project dependent, do not use in parameter script)

GLOB_SUN_ALTITUDE

according to the settings in the Sun... dialog box

sun altitude (project dependent, do not use in parameter script)

GDL Reference Guide

323

Miscellaneous

General element parameters

GLOB_LAYER layer of the element

name of the layer the element is assigned to

GLOB_ID user ID of the element

1D as set in the settings dialog box

GLOB_INTGUID internal GUID of the element

the internal GUID generated by the program (cannot be controlled by the user)

GLOB_ELEVATION

base elevation of the element
o door/ window objects: sill height, according to current settings

o slab: the elevation of the chosen reference plane of the slab, according to settings
o other elements/ objects: the base elevation, according to settings

GLOB_ELEM_TYPE

element type, for labels and property objects contains the type of the parent element

0 - none (individunal label), 1-object, 2-lamp, 3-window, 4-door, 5-wall, G-colummn, 7-slab, 8-roof; 9-fill, 10-mesh, 11-zone, 12 - beam, 13 - curtain wall, 14 - curtain wall frame,

15 - curtain wall panel, 16 - curtain wall junction, 17 - curtain wall accessory, 18 - shell, 19 - skylight, 20 - morph

Object, Lamp, Doot, Window, Wall End, Skylight parameters

SYMB_LINETYPE line type of the library part

applied as the defanit line type of the 2D symbol

SYMB_FILL fill type of the library part

applied on cut surfaces of library parts in section/ elevation windows

SYMB_FILL_PEN pen of the fill of the library part

applied on cut surfaces of library parts in section/ elevation windows

SYMB_FBGD_PEN pen of the background of the fill of the library part

applied on cut surfaces of library parts in section/ elevation windows

SYMB_SECT_PEN pen of the library part in section

applied on contours of cut surfaces of library parts in section/ elevation windows

GDL Reference Guide

324

Miscellaneous

SYMB_VIEW_PEN default pen of the library part
applied on all edges in 3D window and on edges on view in section/ elevation windows

SYMB_MAT default material of the library part

SYMB_POS_X position of the library part (x)

relative to the project origin (excluding door, window and wall end: relative to the startpoint of the including wall)

SYMB_POS_Y position of the library part (y)

relative to the project origin (excluding door, window and wall end: relative to the staripoint of the including wall) Note: see the section called “Doors and Windows” for orientation
of Y and Z axes

SYMB_POS_Z position of the library part (z)

relative to the project origin (excluding door, window and wall end: relative fo the startpoint of the including wall) Note: see the section called “Doors and Windows” for orientation
of Y and Z axes

SYMB_ROTANGLE rotation angle of the library part

numeric rotation from within the settings dialog is performed around the current anchor point

SYMB_MIRRORED library part mirrored

0-no, 1-yes (mirroring is performed aronnd the current anchor point.) Always O for wall ends, except when the origin of the local coordinate system is in a non-rectangular vertex
of a trapezoidal wall’s pobygon.

Object, Lamp, Doot, Window, Wall End, Skylight, Curtain Wall Accessory parameters -

available for listing and labels only
SYMB_A_SIZE nominal length/width of library patt

length of object/ lamp, width of window/ door (fixced parameter), width of accessory

SYMB_B_SIZE nominal width/height of library parts
width of object/ lamp, height of window/ door (fixed parameter), height of accessory

Object, Lamp, Curtain Wall Accessory parameters - available for listing and labels only
SYMB_Z_SIZE nominal height/length of the library part

length of accessory or if a user parameter is named in Zy3x format then it will be used for nominal height, otherwise 0

GDL Reference Guide 325

Miscellaneous

Window, Door and Wall End parameters

WIDO_REVEAL_ON window/door built-in reveal is on

O-reveal is off; 1-reveal is on

WIDO_SILL sill depth of the window/door - sometimes referred to as reveal depth

Sfor curved walls: in radial direction at nominal sized opening corner
WIDO_SILL_HEIGHT window/door nominal sill height
WIDO_RSIDE_SILL_HEIGHT window/door sill height on the reveal side
WIDO_OPRSIDE_SILL. HEIGHT window/door sill height on the side opposite to the reveal side
WIDO_RIGHT_JAMB window/door built-in jamb on the right side
WIDO_LEFT_JAMB window/door built-in jamb on the left side
WIDO_THRES_DEPTH window/doot built-in sill/threshold depth
WIDO_HEAD_DEPTH window/doot built-in head depth
WIDO_HEAD HEIGHT window/door nominal head height
WIDO_RSIDE_HEAD_HEIGHT window/door head height on the reveal side
WIDO_OPRSIDE_HEAD HEIGHT window/door head height on the side opposite to the reveal side
WIDO_REVEAL_SIDE reveal side is opposite to the opening side

1-yes, 0-no - when placing an element, the default value is O for windows, 1 for doors
WIDO_FRAME_THICKNESS frame thickness of window/door

when flipping doors/ windows, they will be mirrored then relocated antomatically by this value
WIDO_POSITION offset of the door/window

angle or distance between the axis of the opening or wall end and the normal vector at the wall’s starting point
WIDO_ORIENTATION window/door opening otientation

left/ right - it will work fine only if the door/ window was created according to local standards
WIDO_MARKER_TXT window/door marker text
WIDO_SUBFL_THICKNESS subfloor thickness (for sill height correction)

GDL Reference Guide

326

Miscellaneous

WIDO_PREFIX

window/door sill height prefix

WIDO_CUSTOM_MARKER

window/door custom marker switch

1-parameters can be used in the 2D script while the antomatic dimension is not present

WIDO_ORIG_DIST

distance of the local origin from the center of curvature of the wall

distance of the local origin from the centerpoint of the curved wall, O for straight walls. Negative for wall ends at the ending point of the curved wall.

WIDO_PWALL_INSET

parapet wall inset

Window, Door parameters - available for listing and labels only

WIDO_RSIDE_WIDTH

window/door opening width on the teveal side

WIDO_OPRSIDE_WIDTH

window/door opening width on the side opposite to the reveal side

WIDO_RSIDE_HEIGHT

window/door opening height on the reveal side

WIDO_OPRSIDE_HEIGHT

window/door opening height on the side opposite to the reveal side

WIDO_RSIDE_SURF

window/door opening surface area on the reveal side

WIDO_OPRSIDE_SURF

window/door opening sutface atea on the side opposite to the reveal side

WIDO_N_RSIDE_WIDTH

nominal window/door opening width on the reveal side

WIDO_N_OPRSIDE_WIDTH

nominal window/door opening width on the side opposite to the reveal side

WIDO_N_RSIDE_HEIGHT

nominal window/door opening height on the reveal side

WIDO_N_OPRSIDE_HEIGHT

nominal window/door opening height on the side opposite to the reveal side

WIDO_N_RSIDE_SURF

nominal window/door opening surface on the reveal side

WIDO_N_OPRSIDE_SURF

nominal window/door opening surface on the side opposite to the reveal side

WIDO_VOLUME

window/door opening volume

WIDO_GROSS_SURFACE

window/door opening nominal surface area

WIDO_GROSS_VOLUME

window/door opening nominal volume

GDL Reference Guide

327

Miscellaneous

Lamp parameters - available for listing and labels only

LIGHT_ON light is on

0-light is off; 1-light is on
LIGHT_RED red component of the light color
LIGHT_GREEN green component of the light color
LIGHT_BLUE blue component of the light color

LIGHT_INTENSITY

light intensity

Label parameters

LABEL POSITION

position of the label

array[3][2] containing the coordinates of the 3 points defining the label position

LABEL_ASSOC_ELEM_ORIENTATION

o straight elements: the direction of the reference line
o curved elements: the direction of the chord of the arc
o point-like elements: the rotation angle of the element

orientation of the associated element

LABEL_CUSTOM_ARROW

1 if the Use symbol arrow checkbox is checked, 0 otherwise

use symbol arrow option on/off

LABEL_ARROW_LINETYPE

line type of the line of the arrow

LABEL_ARROW_PEN

pen of the arrow

LABEL_ARROWHEAD_PEN

pen of the arrowhead

LABEL _FONT_NAME

font name

LABEL_TEXT SIZE

text size

LABEL_TEXT_PEN

pen of the text

LABEL_TEXT_BG_PEN
0 if opaque is off, the backgronnd pen otherwise

text box background pen

GDL Reference Guide

328

Miscellaneous

LABEL_FONT_STYLE font style
O-normal, 1-bold, 2-italic, 4- underline
LABEL_FONT_STYLE2 font style in the settings dialog box
0 - normal, otherise j1 + 2%2 + 4%3 + 32%i6 + 64%7 + 128%8, j1 - bold, j2 - italic, j3 - underline, j6 - superscript, j7 - subscript, j8 - strifethrongh
LABEL_FRAME_ON label frame on/off
1 if the label frame is checked, O otherwise
LABEL_FRAME_OFFSET frame offset
LABEL_ANCHOR_POS label anchor position
0 - middle, 1 - top, 2 - bottom
LABEL_ROTANGLE rotation angle
LABEL_ALWAYS_READABLE label text is always readable
1 if Abways Readable is checked, O otherwise
LABEL_TEXT_WRAP wrap label text
1§ Wrap Text is checked, O otherwise
LABEL_TEXT_ALIGN text alignment
1 - left aligned, 2 - center aligned, 3 - right aligned, 4 - full justified
LABEL_TEXT_LEADING line spacing factor
LABEL_TEXT _WIDTH_FACT width factor
LABEL_TEXT CHARSPACE_FACT spacing factor

Wall parameters - available for Doors/Windows, listing and labels

WALL_ID user ID of the wall

WALL_INTGUID internal GUID of the wall
the internal GUID generated by the program (cannot be controlled by the user)

WALL_RESOL 3D resolution of a curved wall
effective in 3D only

GDL Reference Guide

329

Miscellaneous

WALL_THICKNESS thickness of the wall

in case of inclined walls: the wall thickness at the opening axis (local 3 axis)

WALL_START_THICKNESS Start thickness of the wall
WALL_END_THICKNESS End thickness of the wall
WALL_INCL inclination of the wall surfaces

the angle between the two inclined wall surfaces - O for common straight walls

WALL_HEIGHT height of the wall
WALL_MAT_A surface attribute index of the wall on the side opposite to the opening side
WALL_MAT_B surface attribute index of the wall on the opening side
this can vary from opening to opening placed in the same wall
WALL_MAT_EDGE surface attribute index of the edges of the wall
WALL_LINETYPE line type of the wall
applied on the contours only in the floor plan window
WALL_FILL fill type of the wall
[fill index, first skin of a composite structure
WALL_FILL_PEN pen of the wall fill
WALL_COMPS_NAME name of the composite or complex structure of the wall

the name of the profile attribute for complex wall, the name of the composite attribute for composite walls, empty string otherwise.

WALL_BMAT_NAME name of the building material of the wall

building material name of the wall, empty string for composite or complex: walls.

WALL_SKINS NUMBER number of composite ot complex wall skins
range of 1to 127, 0 if single fill applied

GDL Reference Guide

330

Miscellaneous

WALL_SKINS_PARAMS parameters of the composite or complex wall skins

array with 17 columns with arbitrary number of rows:

- (1] il

o 2] thickness

* /3] (old contour pen)

« 4] pen of fill

/5] pen of fill background

* /6] core status

 [7] upper line pen

/8] upper line type

* [9] lower line pen

* [10] lower line type

 [11] end face pen

* [12] fill orientation

o [13] skin type

* [14] end face line type

o [15] finish skin statns

e [16] oriented fill status

o [17] trapexoid/ double slanted status.

core status: 0 - not part, 1 - part, 3 - last core skin; fill orientation: 0 - global, 1 - local; skin type: O - cut, 1 - below cutplane, 2 - above cutplane (all skin types are O for simple
walls); trapezoid status: O - is not, 1 - is. For D/ W in complex walls on the floor plan this variable contains the data of all cut skins, for wall ends on the floor plan the data
of all skins. finish skin status: 0 - not finish skin, 1 - finish skin, oriented fill status: 0 - global or local fill orientation as set in the "fill orientation" column, 1 - fill orientation
and sige match with the wall skin direction and thickness

For D/ W and wall ends in the 3D window contains the data of the skins actually cut by the D/ W or wall end.

WALL_SKINS BMAT_NAMES building material names of the composite or complex wall skins

array with 1 column: building material name of the skin and with arbitrary number of rows.

For D/ W and wall ends in the 3D window contains the data of the skins actually cut by the D/ W or wall end.

WALL_SECT_PEN pen of the contours of the wall cut surfaces

applied on contonrs of cut surfaces both in floor plan and section/ elevation windows

WALL_VIEW_PEN pen of the contours of the wall on view

applied on all edges in 3D window and on outline edges (edges on view below cutting plane) in floor plan and section/ elevation window

WALL_FBGD_PEN pen of the background of the fill of the wall

GDL Reference Guide 331

Miscellaneous

WALL_DIRECTION

direction of the wall

straight walls: the direction of the reference line, curved walls: the direction of the chord of the arc

WALL_POSITION

absolute coordinates of the wall

array with 3 colummns: x;, y, 2, which means the position of the walls starting point relative to the project origin

WALL_TEXTURE_WRAP

array with 14 rows:
o [1]: wrapping_method
o [2]: wrap_flags
o 3]/
G

=

=

4]-15]: origin_X, origin_Y, origin_Z (nodes of vert 1)
7]-/8]: endOfX_X, endOfX_Y, endOfX_Z (nodes of vert 2)

texture wrapping data of the wall to be used in VERT and COOR{2}, or COOR{3} commands.
The wall texture coordinates are transformed to match the local coordinate system of the wall-
connected object (no additional transformations needed).

o [9]-[10)-[11]: endOfY_X, endOfY_Y, endOfY_Z (nodes of vert 3)
o [12]-[13]-[14]: endOfZ_X, endOfZ_Y, endOfZ_Z (nodes of vert 4)

Wall parameters - available for listing and labels only

WALL LENGTH_A

length of the wall on the reference line side

WALL_LENGTH_B

length of the wall on the side opposite to the reference line

WALL_LENGTH_A_CON

conditional wall length on the reference line side

WALL_LENGTH_B_CON

conditional wall length on the side opposite to the reference line

WALL_CENTER_LENGTH

length of the wall at the center

WALL_AREA

area of the wall

WALL_PERIMETER

perimeter of the wall

WALL_SURFACE_A

sutrface area of the wall on the reference line side

WALL_SURFACE_B

surface area of the wall on the side opposite to the reference line

WALL_SURFACE_A_CON

conditional wall surface area on the reference line side

WALL_SURFACE_B_CON

conditional wall surface area on the side opposite to the reference line

WALL_GROSS_SURFACE_A

gross surface area of the wall on the reference line side

GDL Reference Guide

332

Miscellaneous

WALL_GROSS_SURFACE_B

gross surface area of the wall on the side opposite to the reference line

WALL_EDGE_SURF

surface area of the edge of the wall

WALL_VOLUME

volume of the wall

WALL_VOLUME_CON

conditional volume of the wall

WALL_GROSS_VOLUME

gross volume of the wall

WALL_VOLUME_A

wall skin volume on the reference line side

WALL_VOLUME_A_CON

conditional wall skin volume on the reference line side

WALL_VOLUME_B

wall skin volume on the side opposite to the reference line

WALL_VOLUME_B_CON

conditional wall skin volume on the side opposite to the reference line

WALL_DOORS_NR

number of doors in the wall

WALL_WINDS_NR

number of windows in the wall

WALL_HOLES_NR

number of empty openings

WALL_DOORS_SURF

surface area of doors in the wall

WALL_WINDS_SURF

surface area of windows in the wall

WALL_HOLES_SURF

surface area of empty openings in the wall

WALL_HOLES_SURF_A

analytic surface area of openings on the reference line side

WALL_HOLES_SURF_B

analytic surface area of openings on the opposite side

WALL_HOLES_VOLUME

analytic volume of openings in the wall

WALL_WINDS_WID

combined width of the windows in the wall

WALL_DOORS_WID

combined width of the doors in the wall

WALL_COLUMNS_NR

number of columns in the wall

WALL_CROSSSECTION_TYPE

cross-section type of the wall

0 - complex profiled, 1 - rectangular, 2 - slanted, 3 - double slanted

WALL_MIN_HEIGHT

minimum height of the wall

WALL_MAX HEIGHT

maximum height of the wall

GDL Reference Guide

333

Miscellaneous

WALL_SKIN_MIN_HEIGHT_A

minimum height of the wall skin on the reference line side

WALL_SKIN_MAX HEIGHT_A

maximum height of the wall skin on the reference line side

WALL_SKIN_MIN_HEIGHT_B

minimum height of the wall skin on the reference line side

WALL_SKIN_MAX HEIGHT_B

maximum height of the wall skin on the side opposite to the reference line

WALL_SKIN_THICKNESS_A

wall skin thickness on the reference line side

WALL_SKIN_THICKNESS_B

wall skin thickness on the side opposite to the reference line

WALL_INSU_THICKNESS

wall insulation skin thickness

WALL_AIR_THICKNESS

wall air skin thickness

Column parameters - available for listing and labels only

COLU_CORE

core/veneer properties

serves compatibility: it is only effective in the properties script of .CPS (Column.Properties) files

COLU_HEIGHT

height of the column

COLU_MIN_HEIGHT

Minimum height of the column

COLU_MAX_HEIGHT

Maximum height of the column

COLU_VENEER_WIDTH

thickness of the column veneer

COLU_CORE_X

Width of the core

COLU_CORE_Y

Depth of the core

COLU_DIM1 1st dimension of the column
COLU_DIM2 2nd dimension of the column
COLU_MAT sutrface attribute index of the column

Wall wrapping will replace column surface with the surfaces of the connecting walls

COLU_LINETYPE

applied on the contours only in the floor plan window

line type of the column

COLU_CORE_FILL

fill of the column core

GDL Reference Guide

334

Miscellaneous

COLU_CORE_BMAT_NAME

building material name of the column core

COLU_VENEER_FILL

fill of the column veneer

COLU_VENEER_BMAT_NAME

building material name of the column veneer

COLU_SECT_PEN

pen of the contours of the column cut surfaces

applied on contours of cut surfaces in both floor plan and section/ elevation windows

COLU_VIEW_PEN

pen of the column on view

applied on all edges in 3D window and on outline edges (edges on view below cutting plane) in floor plan and section/ elevation windows

COLU_CORE_FILL_PEN

pen of the fill of the column core

COLU_CORE_FBGD_PEN

pen of the background of the fill of the column core

COLU_VENEER_FILL PEN

pen of the fill of the column veneer

COLU_VENEER_FBGD_PEN

pen of the background of the fill of the column veneer

COLU_PERIMETER

Perimeter of the column

COLU_AREA

Area of the column

COLU_VOLUME

Volume of the column

COLU_GROSS_VOLUME

Gross volume of the column

COLU_CORE_SURF

sutrface area of the column core

COLU_CORE_GROSS_SURF

Gross surface area of the column

COLU_CORE_VOL

volume of the column core

COLU_CORE_GROSS_VOL

Gross volume of the core

COLU_VENEER_SURF

sutrface area of the column veneer

COLU_VENEER_GROSS_SURF

Gross surface area of the veneer

COLU_VENEER_VOL

volume of the column veneer

COLU_VENEER_GROSS_VOL

Gross volume of the veneer

COLU_CORE_TOP_SURF

Surface area of the core top

COLU_CORE_BOT_SURF

Surface area of the core bottom

GDL Reference Guide

335

Miscellaneous

COLU_VENEER_TOP_SURF

Surface area of the veneer top

COLU_VENEER_BOT_SURF

Surface area of the veneer bottom

COLU_CORE_GROSS_TOPBOT_SURF

Gross surface area of the core top and bottom

COLU_VENEER_GROSS_TOPBOT_SURF

Gross surface area of the veneer top and bottom

COLU_CROSSSECTION_TYPE

0 - complex profiled, 1 - rectangular, 4 - round

cross-section type of the column

COLU_PROFILE_NAME

name of the profile of the column, if complex

Beam parameters - available for listing and labels only

BEAM_THICKNESS

thickness of the beam

BEAM_HEIGHT

height of the beam

BEAM_REFLINE_OFFSET

offset of the reference line relative to the axes of the beam

BEAM_PRIORITY

3D intersection priority index number

BEAM_MAT_RIGHT

surface attribute index of the beam on the right side of the reference line

BEAM_MAT_LEFT

sutrface attribute index of the beam on the left side of the reference line

BEAM_MAT_TOP

surface attribute index of the beam on the top

BEAM_MAT_BOTTOM

sutface attribute index of the beam at the bottom

BEAM_MAT_END

surface attribute index of the beam at both ends

BEAM_OUTLINE_LINETYPE

line type of the beam outline

BEAM_AXES_LINETYPE

line type of the beam axes

BEAM_FILL

fill type of the beam

BEAM_BMAT_NAME

building material name of the beam

BEAM_FILL_PEN

pen of the beam fill

BEAM_SECT_PEN

pen of the contours of the beam cut surfaces

BEAM_FBGD_PEN

pen of the background of the fill of the beam

GDL Reference Guide

336

Miscellaneous

BEAM_DIRECTION

the direction of the beam reference line

BEAM_POSITION

absolute coordinates of the beam axis starting point

BEAM_LENGTH_RIGHT

length of the beam on the right side of the reference line

BEAM_LENGTH_LEFT

length of the beam on the left side of the reference line

BEAM_RIGHT_SURF

surface area of the beam on the right side of the reference line

BEAM_LEFT_SURF

surface area of the beam on the left side of the reference line

BEAM_TOP_SURF

surface area of the top of the beam

BEAM_BOTTOM_SURF

surface area of the bottom of the beam

BEAM_END_SURF

surface area of both ends of the beam

BEAM_VOLUME

volume of the beam

BEAM_VOLUME_CON

conditional volume of the beam

BEAM_HOLES_NR

number of holes in the beam

BEAM_HOLES_SURF

total surface area of holes in the beam

BEAM_HOLE_EDGE_SURF

total surface area of hole edges in the beam

BEAM_HOLES_VOLUME

total volume of holes in the beam

BEAM_CROSSSECTION_TYPE
0 - complex profiled, 1 - rectangnlar

cross-section type of the beam

BEAM_PROFILE_NAME

name of the profile of the beam, if complex

Slab parameters - available for listing and labels only

SLAB_THICKNESS

thickness of the slab

SLAB_ELEVATION_TOP

top elevation of the slab

SLAB_ELEVATION_BOTTOM

bottom elevation of the slab

SLAB_MAT_TOP

surface attribute index of the top surface of the slab

SLAB_MAT_EDGE

surface attribute index of the edges of the slab

GDL Reference Guide

337

Miscellaneous

SLAB_MAT BOTT

surface attribute index of the bottom surface of the slab

SLAB_LINETYPE

line type of the slab

SLAB_FILL

[fill index: - its value is negative in case of a composite structure

fill of the slab

SLAB_FILL_PEN

pen of the fill of the slab

SLAB_FBGD_PEN

pen of the background of the fill of the slab

SLAB_COMPS_NAME

name of the composite structure of the slab

SLAB_BMAT_NAME

building material name of the slab, empty string for composite slabs

SLAB_SKINS_NUMBER
range of 1 10 8, 0 if single fill applied

number of composite slab skins

SLAB_SKINS_PARAMS

array with 16 columns with arbitrary number of rows:
. 1] fill

o 2] thickness

* /3] (old contour pen)

o [4] pen of fill

o /5] pen of fill background
* /6] core status

 [7] upper line pen

/8] upper line type

* [9] lower line pen

* [10] lower line type

* [11] end face pen

e [12] fill orientation

* [13] skin type

o [14] end face line type

o [15] finish skin status

o [16] oriented fill status

parameters of the composite slab skins

core status: 0 - not part, 1 - part, 3 - last skin of core, fill orientation: O - global, 1 - local; skin type: in the current ARCHICAD always O - cut, it can be used as in walls

later; finish skin status: 0 not finish skin, 1: finish skin

GDL Reference Guide

338

Miscellaneous

SLAB_SKINS_BMAT_ NAMES building material names of the composite slab skins
array with 1 column: building material name of the skin and with arbitrary number of rows.

SLAB_SECT_PEN pen of the contours of the slab in section
applied on contours of cut surfaces in both floor plan and section/ elevation windows

SLAB_VIEW_PEN pen of the slab
applied on all edges in 3D window and on visible edges in section/ elevation windows

SLLAB_TOP_SURF top surface area of the slab
not reduced by the surface area of holes

SLAB_GROSS_TOP_SURF gross surface area of the slab top without hole
reduced by the surface area of holes

SLAB_TOP_SURF_CON conditional top surface area of the slab

reduced by the surface area of holes, which are bigger than the given value

SLAB_BOT_SURF bottom surface area of the slab without hole
not reduced by the surface area of holes

SLLAB_GROSS_BOT_SURF gross surface area of the slab bottom
reduced by the surface area of holes

SLAB_BOT _SURF_CON conditional bottom surface area of the slab

rednced by the surface area of holes, which are bigger than the given value

SLAB_EDGE_SURF surface area of the edges of the slab
not reduced by the sutface area of holes

SLAB_GROSS_EDGE_SURF gross surface area of the slab edges without hole
reduced by the surface area of holes

SLAB_PERIMETER perimeter of the slab

SLLAB_VOLUME volume of the slab

not reduced by the volume of holes

GDL Reference Guide

339

Miscellaneous

SLAB_GROSS_VOLUME gross volume of the slab without hole
reduced by the volume of holes
SLAB_VOLUME_CON conditional volume of the slab

reduced by the volume of holes, which are bigger than the given valne

SLAB_SEGMENTS_NR number of segments of the slab
SLAB_HOLES_NR number of holes in the slab
SLAB_HOLES_AREA area of holes in the slab
SLAB_HOLES_PRM petimeter of holes in the slab
SLAB_GROSS_TOP_SURF_WITH_HOLES gross surface area of the slab top
SLAB_GROSS_BOT_SURF_WITH_HOLES gross surface area of the slab bottom
SLAB_GROSS_EDGE_SURF_WITH_HOLES gross surface area of the slab edges
SLAB_GROSS_VOLUME_WITH_HOLES gross volume of the slab

Roof parameters - available for skylights, listing and labels

ROOF_THICKNESS thickness of the roof

ROOF_ANGLE slope of the roof

ROOF_MAT_TOP surface attribute index of the top surface of the roof
ROOF_MAT_EDGE surface attribute index of the edges of the roof
ROOF_MAT _BOTT surface attribute index of the bottom surface of the roof
ROOF_LINETYPE line type of the roof

applied on the contours only in the floor plan window
ROOF_FILL fill of the roof

Sfill index: - its value is negative in case of a composite structure
ROOF_FILL_PEN pen of the fill of the roof
ROOF_FBGD_PEN pen of the background of the fill of the roof

GDL Reference Guide 340

Miscellaneous

ROOF_COMPS_NAME

name of the composite structure of the roof

ROOF_BMAT_NAME

building material name of the roof, empty string for composite roofs

ROOF_SKINS_NUMBER
range of 1 10 8, 0 if single fill applied

number of composite roof skins

ROOF_SKINS_PARAMS

array with 16 columnswith arbitrary number of rows:

- 1] il

o 2] thickness

* /3] (old contour pen)

« @] pen of fill

o /5] pen of fill background
* /6] core status

o [7] upper line pen
/8] upper line type

* [9] lower line pen

* [10] lower line type

» [11] end face pen

* [12] fill orientation

o [13] skin type

* [14] end face line type
o [15] finish skin statns
o [16] oriented fill status

parameters of the composite roof skin

core status: 0 - not part, 1 - part, 3 - last skin of core, fill orientation: 0 - global, 1 - local; skin type: in the current ARCHICAD ahvays O - cut, it can be used as in walls

later; finish skin status: 0 not finish skin, 1: finish skin

ROOF_SKINS_BMAT_NAMES

building material names of the composite roof skin

array with 1 colummn: building material name of the skin and with arbitrary number of rows.

ROOF_SECT_PEN

pen of the contours of the roof cut surfaces

applied on contours of cut surfaces both in floor plan and section/ elevation windows

ROOF_VIEW_PEN

applied on all edges in 3D window and on ontline edges (edges on view below cutting plane) in floor plan and section/ elevation windows

pen of the roof on view

GDL Reference Guide

341

Miscellaneous

Roof parameters - available for listing and labels only
ROOF_BOTTOM_SURF bottom surface area of the roof

not reduced by the surface area of the holes, which are bigger than the given value
ROOF_GROSS_ BOTTOM_SURF gross surface area of the roof bottom

reduced by the surface area of the holes
ROOF_BOTTOM_SURF_CON conditional bottom surface area of the roof

rednced by the surface area of the holes, which are bigger than the given value

ROOF_TOP_SURF top surface area of the roof
not reduced by the surface area of the holes, which are bigger than the given valne
ROOF_GROSS_TOP_SURF gross surface area of the roof top
rednced by the surface area of the holes
ROOF_TOP_SURF_CON conditional surface area of the roof

reduced by the surface area of the holes, which are bigger than the given value

ROOF_EDGE_SURF surface area of the edge of the roof
not reduced by the surface area of the holes

ROOF_GROSS_EDGE_SURF gross surface area of the roof edges
reduced by the surface area of the holes

ROOF_CONTOUR_AREA area covered by the roof

ROOF_PERIMETER perimeter of the roof

ROOF_VOLUME volume of the roof

not reduced by the volume of holes

ROOF_GROSS_VOLUME gross volume of the roof
rednced by the volume of holes
ROOF_VOLUME_CON conditional volume of the roof

reduced by the volume of holes, which are bigger than the given valne

GDL Reference Guide 342

Miscellaneous

ROOF_SEGMENTS_NR

number of segments of the roof

ROOF_HOLES_NR

number of holes in the roof

ROOF_HOLES_AREA

area of holes in the roof

ROOF_HOLES_PRM

perimeter of holes in the roof

ROOF_INSU_THICKNESS

roof insulation skin thickness

ROOF_RIDGE

roof ridges length

ROOF_VALLEY

roof valleys length

ROOF_GABLE

roof gables length

ROOF_HIP roof hips length
ROOF_EAVES roof eaves length
ROOF_PEAK roof peaks length

ROOF_SIDE_WALL

roof side wall connection length

ROOF_END_WALL

roof end wall connection length

ROOF_TRANSITION_DOME

roof dome connection length

ROOF_TRANSITION_HOLLOW

roof hollow connection length

Fill parameters - available for listing and labels only

FILL_LINETYPE

line type of the fill

FILL_FILL

fill type of the fill

FILL,. BMAT_NAME

building material name of the fill

FILL_FILL_PEN

pen of the fill pattern of the fill

FILL_PEN pen of the fill
FILL_FBGD_PEN pen of the background of the fill
FILL_SURF area of the fill

FILL_PERIMETER

perimeter of the fill

GDL Reference Guide

343

Miscellaneous

FILL_SEGMENT_NR number of segments of the fill
FILL_HOLES_NR number of holes in the fill
FILL_HOLES_PRM perimeter of holes in the fill
FILL_HOLES_AREA area of holes in the fill
FILL_FILL_CATEGORY fill category of the fill

0 - Draft, 1 - Cut, 2 - Cover

Mesh parameters - available for listing and labels only

MESH_TYPE type of the mesh

1- closed body, 2 - top & edge, 3 - top surface only
MESH_BASE_OFFSET offset of the bottom surface to the base level
MESH_USEREDGE_PEN pen of the user defined ridges of the mesh
MESH_TRIEDGE_PEN pen of the triangulated edges of the mesh
MESH_SECT_PEN pen of the contours of the mesh in section

applied on contonrs of cut surfaces of walls both in floor plan and section/ elevation windows
MESH_VIEW_PEN pen of the contours on view

applied on all edges in 3D window and on edges on view in section/ elevation windows
MESH_MAT_TOP surface attribute index of the top surface of the mesh
MESH_MAT_EDGE surface attribute index of the edges of the mesh
MESH_MAT_BOTT surface attribute index of the bottom surface of the mesh
MESH_LINETYPE line type of the mesh

applied on the contours only in the floor plan window
MESH_FILL fill type of the mesh
MESH_BMAT_NAME building material name of the mesh
MESH_FILL_PEN pen of the fill of the mesh

GDL Reference Guide

344

Miscellaneous

MESH_FBGD_PEN

pen of the background of the fill of the mesh

MESH_BOTTOM_SURF

bottom surface area of the mesh

MESH_TOP_SURF

top surface area of the mesh

MESH_EDGE_SURF

surface area of the edge of the mesh

MESH_PERIMETER

perimeter of the mesh

MESH_VOLUME

volume of the mesh

MESH_SEGMENTS_NR

number of segments of the mesh

MESH_HOLES_NR

number of holes in the mesh

MESH_HOLES_AREA

area of holes in the mesh

MESH_HOLES_PRM

petimeter of holes in the mesh

Curtain Wall parameters - available for listing and labels only

CWALL_ID

user ID of the curtain wall

CWALL_FRAMES_LENGTH

length of frames in the curtain wall

CWALL_CONTOUR_FRAMES LENGTH

length of frames on contour in the curtain wall

CWALL_MAINAXIS_FRAMES LENGTH

length of frames on primary gridlines in the curtain wall

CWALL_SECAXIS_FRAMES_LENGTH

length of frames on secondary gridlines in the curtain wall

CWALL_CUSTOM_FRAMES_LENGTH

length of other frames in the curtain wall

CWALL_PANELS_SURF

surface area of panels in the curtain wall

CWALL_PANELS_SURF_N

surface area of north panels in the curtain wall

CWALL_PANELS_SURF_S

surface area of south panels in the curtain wall

CWALL_PANELS_SURF_E

surface area of east panels in the curtain wall

CWALL_PANELS_SURF_W

surface area of west panels in the curtain wall

CWALL_PANELS_SURF_NE

surface area of northeast panels in the curtain wall

CWALL_PANELS_SURF_NW

surface area of northwest panels in the curtain wall

GDL Reference Guide

345

Miscellaneous

CWALL_PANELS_SURF_SE

surface area of southeast panels in the curtain wall

CWALL_PANELS_SURF_SW

surface area of southwest panels in the curtain wall

CWALL_SURF

surface area of the curtain wall

CWALL_SURF_BOUNDARY

surface area of the curtain wall bordered by boundary frames

CWALL_LENGTH

length of the curtain wall

CWALL_HEIGHT

height of the curtain wall

CWALL_SLANT_ANGLE

slant angle of the curtain wall

CWALL_THICKNESS

thickness of the curtain wall

CWALL_PANELS_NR

number of panels in the curtain wall

CWALL_PATTERN_ANGLE

pattern angle of the curtain wall

Curtain Wall Frame parameters - available for listing and labels only

CWFRAME_TYPE

type of the frame

Tnvisible', 'Generic', "Butt-glazed' or the name of the GDL object

CWFRAME_CLASS

0 - mullion, 1 - transom, 2 - boundary, 3 - custom

class of the frame

CWFRAME_POSITION

location of the frame

0 - primary gridline, 1 - secondary gridline, 2 - boundary, 3 - other

CWFRAME_DIRECTION
degree between 0 and 90

slant angle of the frame

CWFRAME_WIDTH

width of the frame

CWFRAME_DEPTH

depth of the frame

CWFRAME_LENGTH

length of the frame

CWFRAME_MAT

sutrface attribute index of the frame

GDL Reference Guide

346

Miscellaneous

Curtain Wall Panel parameters - available for listing and labels only

CWPANEL_TYPE
"Generic" or the name of the GDL object

type of the panel

CWPANEL_CLASS

0 - main, 1 - distinct, 2 - custom

class of the panel

CWPANEL_VERTICAL_DIRECTION
degree between -90 and 90

slant angle of exterior surface of the panel

CWPANEL_HORIZONTAL_DIRECTION
degree between -180 and 180

angle of exterior surface of the panel from Project North

CWPANEL WIDTH

width of the panel

CWPANEL _NOMINAL WIDTH

nominal width of the panel

CWPANEL_HEIGHT

height of the panel

CWPANEL_NOMINAL_HEIGHT

nominal height of the panel

CWPANEL_THICKNESS

thickness of the panel

CWPANEL_SURF

surface area of the panel

CWPANEL_GROSS_SURF

gross surface area of the panel

CWPANEL_NOMINAL_SURF

nominal surface area of the panel

CWPANEL_PERIMETER

perimeter of the panel

CWPANEL_MAT_OUTER

surface attribute index for the exterior surface of the panel

CWPANEL_MAT_INNER

surface attribute index for the interior surface of the panel

CWPANEL MAT_CUT

surface attribute index for the edge of the panel

CWPANEL_FUNCTION
0 - fixed, 1 - door, 2 - window

function of the panel

CWPANEL_ORIENTATION
eft/ right

opening otientation of door/window panel

GDL Reference Guide

347

Miscellaneous

Curtain Wall Junction parameters - available for listing and labels only
CWJUNC_TYPE type of the junction
name of the GDL object

Curtain Wall Accessory parameters - available for listing and labels only
CWACC_TYPE type of the accessory
name of the GDL object

Migration parameters - available for migration scripts only
FROM_GUID Main GUID of the library part which was placed originally

TO_GUID Main GUID of the library part to which the migration is performed

Skylight parameters - available for listing and labels only

SKYL_MARKER_TXT skylight marker text
SKYL_OPENING_SURF skylight opening surface
SKYL_OPENING_VOLUME volume of the opening cut by the skylight
SKYL_OPENING_HEIGHT skylight opening height
SKYL_OPENING_WIDTH skylight opening width
SKYL_HEADER HEIGHT skylight header height
SKYL_SILL_HEIGHT skylight sill height

Common Parameters for Shells and Roofs - available for listing and labels only
SHELLBASE_THICKNESS thickness of the shell/roof/slab
equal to ROOF_THICKNESS for roofs

SHELLBASE MAT_REFERENCE material of the bottom surface of the shell/roof
equal to ROOF_MAT_BOTT for roofs

GDL Reference Guide 348

Miscellaneous

SHELLBASE_MAT_EDGE material of the edges of the shell/roof
equal to ROOF_MAT_EDGE for roofs
SHELLBASE MAT_OPPOSITE material of the top sutface of the shell/roof
equal to ROOF_MAT_TOP for roofs
SHELLBASE_LINETYPE line type of the shell/roof
applied on the contours only in the floor plan window, equal to ROOF_ILINETYPE for roofs
SHELLBASE_FILL fill of the shell/roof
Sfill index: - its value is negative in case of a composite structure, equal to ROOF_FILL for roofs
SHELLBASE FILL PEN pen of the fill of the roof shell/roof
equal to ROOF_FILI,_PEN for roofs
SHELLBASE_FBGD_PEN pen of the background of the fill of the shell/roof
equal to ROOF_FBGD_PEN for roofs
SHELLBASE_COMPS_NAME name of the composite structure of the shell/roof
equal to ROOF_COMPS_NAME for roofs
SHELLBASE _BMAT NAME building material name of the shell/roof
equal to ROOF_BMAT_NAME for roofs
SHELLBASE_SKINS_NUMBER number of composite roof skins shell/roof

range of 1 to 8, 0 if single fill applied, equal to ROOF_SKINS_NR for roofs

GDL Reference Guide

349

Miscellaneous

SHELLBASE_SKINS_PARAMS

array with 16 columnswith arbitrary number of rows:

- 1]l

o 2] thickness

* /3] (old contour pen)

© @] pen of fill

/5] pen of fill background
* /6] core status

 [7] upper line pen
/8] upper line type

* [9] lower line pen

* [10] lower line type
 [11] end face pen

* [12] fill orientation

o [13] skin type

* [14] end face line type
o [15] finish skin statns
e [16] oriented fill status

parameters of the composite roof skin shell/roof

core status: 0 - not part, 1 - part, 3 - last skin of core, fill orientation: O - global, 1 - local; skin type: in the current ARCHICAD always O - cut, it can be used as in walls

later; finish skin status: 0 not finish skin, 1: finish skin
equal to ROOF_SKINS_PARAMS for roofs

SHELLBASE_SKINS_BMAT_ NAMES

building material names of the composite roof skin shell/roof

array with 1 column: building material name of the skin and with arbitrary number of rows.

equal to ROOF_SKINS_BMAT_NAMES for roofs

SHELLBASE SECT_PEN

applied on contours of cut surfaces both in floor plan and section/ elevation windows, equal to ROOF_SECT_PEN for roofs

pen of the contours of the roof cut surfaces shell/roof

SHELLBASE_VIEW_PEN

pen of the roof on view shell/roof

applied on all edges in 3D window and on outline edges (edges on view below cutting plane) in floor plan and section/ elevation windows, equal to ROOF_VIEW_PEN for roofs

SHELLBASE_REFERENCE_SURF

reference side surface of the shell/roof

not reduced by the surface of holes, equal to ROOF_BOTTOM_SUREF for roofs

GDL Reference Guide

350

Miscellaneous

SHELLBASE_COND_REFERENCE_SURF conditional reference side surface of the shell/roof
equal to ROOF_BOTTOM_SURF_CON for roofs
SHELLBASE_GROSS_REFERENCE_SURF gross surface of the shell/roof reference side
reduced by the surface of the holes, equal to ROOF_GROSS_BOTTOM_SURF for roofs
SHELLBASE_OPPOSITE_SURF surface of the opposite side to the reference side of the shell/roof
not reduced by the surface of holes, equal to ROOF_TOP_SURF for roofs
SHELLBASE_COND_OPPOSITE_SURF conditional surface of the opposite side to the reference side of the shell/roof
reduced by the surface of the holes, which are bigger than the given value; equal to ROOF_TOP_SURF_CON for roofs
SHELLBASE_GROSS_OPPOSITE_SURF gross surface of the opposite side to the reference side of the shell/roof
reduced by the surface of the holes, equal to ROOF_GROSS_TOP_SURF for roofs
SHELLBASE_EDGE_SURF surface of the edge of the shell/roof
not reduced by the surface of holes, equal to ROOF_EDGE_SUREF for roofs
SHELLBASE_GROSS_EDGE_SURF gross surface of the shell/roof edges
reduced by the surface of holes, equal to ROOF_GROSS_EDGE_SURF for roofs
SHELLBASE PERIMETER petimeter of the shell/roof
equal to ROOF_PERIMETER for roofs
SHELLBASE_VOLUME volume of the shell/roof
not reduced by the volume of holes, equal to ROOF_1VOLUME for roofs
SHELLBASE_COND_VOLUME conditional volume of the roof shell/roof
reduced by the volume of holes, which are bigger than the given valne; equal to ROOF_1VOLUME_CON for roofs
SHELLBASE_GROSS_VOLUME gross volume of the roof shell/roof
reduced by the volume of holes, equal to ROOF_GROSS_VOLUME for roofs
SHELLBASE _HOLES_NR number of holes in the shell/roof

equal to ROOF_HOLES_NR for roofs

GDL Reference Guide 351

Miscellaneous

SHELLBASE_HOLES_SURF

equal to ROOF_HOLES_AREA for roofs

surface of holes in the shell/roof

SHELLBASE_HOLES_PRM
equal to ROOF_HOLES_PRM for roofs

perimeter of holes in the shell

SHELLBASE_OPENINGS_NR

number of openings in the shell

SHELLBASE_OPENINGS_SURF

surface of openings in the shell

SHELLBASE_INSU_THICKNESS

equal to ROOF_INSU_THICKINESS for roofs

shell/roof insulation skin thickness

SHELLBASE_RIDGE
equal to ROOF_RIDGE for roofs

shell/roof ridges length

SHELLBASE_VALLEY
equal to ROOF_VALLEY for roofs

shell/roof valleys length

SHELLBASE_GABLE
equal to ROOF_GABLE for roofs

shell/roof gables length

SHELLBASE_HIP
equal to ROOF_HIP for roofs

shell/roof hips length

SHELLBASE_EAVES
equal to ROOF_EAVES for roofs

shell/roof eaves length

SHELLBASE_PEAK
equal to ROOF_PEAK for roofs

shell/roof peaks length

SHELLBASE_SIDE_WALL
equal to ROOF_SIDE_WAILL for roofs

shell/roof side wall connection length

SHELLBASE_END_WALL
equal to ROOF_END_WAILL for roofs

shell/roof end wall connection length

GDL Reference Guide

352

Miscellaneous

SHELLBASE_TRANSITION_DOME
equal to ROOF_TRANSITION_DOME for roofs

shell/roof dome connection length

SHELLBASE_TRANSITION_HOLLOW
equal to ROOF_TRANSITION_HOLLOW for roofs

shell/roof hollow connection length

Parameters for Morphs - available for listing and labels only

MORPH_LINETYPE

Line type of the morph on view

MORPH_FILL

Fill of the morph cut surfaces

MORPH_BMAT_NAME

Building material name of the morph cut surfaces

MORPH_FILL_PEN

Pen of the morph cut surfaces

MORPH_FBGD_PEN

Pen of the background of the fill of the morph cut surfaces

MORPH_SECT_LINETYPE

Line type of the contours of the morph cut surfaces

MORPH_SECT_PEN

Pen of the contours of the moprh cut surfaces

MORPH_VIEW_PEN

Pen of the contours of the morph on view

MORPH_SOLID

Mortph body solid (on/off)

MORPH_MAT_DEFAULT

Morph default material

MORPH_CASTS_SHADOW

Cast shadow (on/off)

MORPH_RECEIVES_SHADOW

Receive shadow (on/off)

MORPH_SURFACE

Gross surface of the morph

MORPH_VOLUME

Volume of the morph

MORPH_FLOOR_PERIMETER

perimeter of the morph on the floor plan

Free users’ globals

GLOB_USER_1

GLOB_USER_2

GLOB_USER_3

GDL Reference Guide

353

Miscellaneous

GLOB_USER_4

GLOB_USER_5

GLOB_USER_6

GLOB_USER_7

GLOB_USER_8

GLOB_USER_9

GLOB_USER_10

free variables 1 to 10 are initialized to number by default

GLOB_USER_11

GLOB_USER_12

GLOB_USER_13

GLOB_USER_14

GLOB_USER 15

GLOB_USER_16

GLOB_USER_17

GLOB_USER_18

GLOB_USER_19

GLOB_USER_20

free variables 11 to 20 are initialized to string by default

GDL Reference Guide

354

Miscellaneous

Example usage of global variables

Excample: lustrating the usage of the GLOB_WORLD_ORIGO_... globals

ADD2 -GLOB_WORLD ORIGO OFFSET X-SYMB POS X, -GLOB WORLD ORIGO OFFSET X-SYMB POS Y

LINE2 -0.1, 0.0, 0.1, 0.0
LINE2 0.0, -0.1, 0.0, 0.1
HOTSPOT2 0.0, 0.0, 1

TEXT2 0, 0, "(0.00 ; 0.00)"
TEXT2 0, 0.5, "World Origin"
DEL TOP

if ABS(GLOB _WORLD ORIGO OFFSET X) > 0.01 OR\
ABS (GLOB_WORLD ORIGO OFFSET Y) > 0.01 THEN
ADD2 - SYMB POS X SYMB POS_Y

— — 4 - —
LINE2 -0.1, 0.0, 0.1, 0.0
LINE2 0.0, -0.1, 0.0, 0.1
HOTSPOT2 0.0, 0.0, 2

TEXT2 0, 0, " (" +
STR (GLOB_WORLD ORIGO OFFSET X, 9, 4) + "; " +
STR (GLOB WORLD ORIGO OFFSET Y, 9, 4) + ")"
TEXT2 0, 0.5, "Virtual Origin™ B
DEL TOP
ENDIF
if ABS(GLOB_WORLD ORIGO OFFSET X + SYMB POS X) > 0.01 OR\
ABS (GLOB_WORLD ORIGO OFFSET Y + SYMB POS Y) > 0.01 THEN
LINE2 -0.1, 0.0, 0.1, 0.0
LINE2 0.0, -0.1, 0.0, 0.1
HOTSPOT2 0.0, 0.0, 3
TEXT2 0, 0, " (" +
STR (GLOB_WORLD ORIGO OFFSET X + SYMB POS X, 9, 4) + "; " +
STR (GLOB WORLD ORIGO OFFSET Y + SYMB POS Y, 9, 4) + ")"
TEXT2 0, 0.5, "Object Placement"
ENDIF

Deprecated Global Variables

These globals are still working in ARCHICAD's environment for compatibility reasons, but we recommend avoiding them during new object

creation.

GDL Reference Guide

355

Miscellaneous

GLOB_CONTEXT context of appearance (view dependent, do not use in parameter script)

1 - library part editor, 2 - floor plan, 3 - 3D view, 4 - section/ elevation, 5 - settings dialog, 6 - list, 7 - detail drawing, 8 - layout, 22 - edjting feedback mode from the floor plan, 23
- editing feedback mode from a 3D view, 24 - editing feedback mode from a section/ elevation, 28 - editing feedback mode from a layont, 43 - generating as an operator from a 3D
view, 44 - generating as an operator from a section/ elevation, 46 - generating as an operator from a list. See the section called “GDL. execution contexts” for more details.

Old Global Variables

Old global variable names can be used; however, the use of the new names is recommended. Fach old global corresponds to a new variable
with a long name.

GLOB SCALE
GLOB HSTORY ELEV
WALL THICKNESS
WALL HEIGHT

WALL SECT PEN
WALL FILL PEN
WALL MAT A

WALL MAT B
WALL MAT EDGE
GLOB_ELEVATION
WIDO SILL

SYMB VIEW PEN
SYMB MAT

GLOB FRAME NR
GLOB FIRST FRAME
GLOB_LAST FRAME
GLOB HSTORY HEIGHT
WIDO ORIG DIST
GLOB_USER 1
GLOB_USER 2

GLOB USER 3
GLOB_USER 4
GLOB_USER 5

GLOB USER 6
GLOB_USER 7
GLOB_USER_8

NHKXS<IOH®NWOPWOZIERGHIOEMEOOQW P

GDL Reference Guide 356

Miscellaneous

A~ WALL FILL

B~ WIDO RIGHT JAMB

C~ WIDO THRES DEPTH
D~ WIDO HEAD DEPTH

E~ WIDO REVEAL SIDE
F~ WIDO FRAME THICKNESS
G~ GLOB_USER 9

H~ WIDO POSITION

I~ GLOB USER 10

J~ WALL RESOL

K~ GLOB_EYEPOS X

L~ GLOB_EYEPOS_Y

M~ GLOB_EYEPOS_ 7

N~ GLOB_TARGPOS X

O~ GLOB_TARGPOS_Y

P~ GLOB_TARGPOS 7

o~ GLOB_CSTORY ELEV
R~ GLOB_CSTORY HEIGHT
S~ GLOB_CH_STORY DIST
T~ GLOB_SCRIPT TYPE
U~ GLOB_NORTH DIR

v~ SYMB MIRRORED

W~ SYMB ROTANGLE

X~ SYMB POS_ X

Y~ SYMB POS Y

Z~ SYMB POS 7

FIX NAMED OPTIONAL PARAMETERS

Parameters set by ARCHICAD

The new method of ARCHICAD for providing information is the method of fixed named optional parameters. If a given library part has a
parameter matching a fix named optional parameter in name and in type, ARCHICAD sets its value according to its function.

GDL Reference Guide 357

Miscellaneous

Parameters for D/W attributes (available for Door, Window, Label, Listing)

Floor plan display

ac_hole_cut_linetype linetype

pen of cut lines [floor plan and section]

ac_hole_overhead_pen pen

pen of the above view edges (overhead) [floor plan only]

ac_hole_overhead_linetype linetype

line type of the above view edges (overhead) [floor plan only]

ac_hole_uncut_pen pen

pen of the below view edges (uncut) [floor plan only]

ac_hole_uncut_linetype linetype

line type of the below view edges (uncut) [floor plan only]

ac_hole_display_option integer

floor plan display option: 1 - Projected, 2 - Projected with Overbead, 3 - Symbolic, 5 - Overbead All

Direction

ac_hole_direction_type integer

opening plane direction: 1 - Associated to Wall, 2 - Vertical

ac_wido_rotation angle

door/ window rotation angle relative to the horizontal cut plane

ac_openingside string

door/ window orientation parameter for listing (L - left, R - right, Custom) according to orientation definition settings (Automatic, Custom). ARCHICAD will disregard any settings

of Compatibility Options/ Orientation Displaying if this parameter is present.

GDL Reference Guide

358

Miscellaneous

Polygonal wall data
ac_walltype

integer

tells whether the window is in a pohgonal wall or not. 1 - non polygonal, 2 - pohygonal.

ac_wallContourPolygon[][3] length

The polygon of the wall in 2D points plus an extra angle value for are sections. [set only if ac_walltype equals 2]

ac_windowInWallContour[4] integer

Indices of the four vertices of the ac_wallContourPolygon polygon that part of the wall contonr polygon as window corner points. [set only if ac_walltype equals 2]

Hole position

ac_hole_position_angle angle

In case of curved walls it gives the angle between the axis of the opening and the normal vector at the wall's starting point.

Anchor data

ac_vertAnchorPos integer
vertical anchor of D/W: 1 - Sill, 2 - Header

ac_revealAnchorPos integer
reveal anchor of D/ W: 1 - Face, 2 - Core

ac_revealToWallCore length

reveal depth measured from the reveal side of the wall core.

Parameters for WALL attributes (available for Door, Window, Label, Listing)

Floor plan display

ac_wall_overhead_pen pen

pen of the above view edges of the wall (overhead) [floor plan only]

ac_wall_overhead_linetype linetype

line type of the above view edges of the wall (overhead) [floor plan only]

GDL Reference Guide 359

Miscellaneous

ac_wall_uncut_linetype linetype

line type of the below view edges of the wall (uncut) [floor plan only]

ac_wall_display_option integer

floor plan display option of the wall: 1 - Projected, 2 - Projected with Overbead, 3 - Symbolic, 4 - OutLines Only, 5 - Overhead All

ac_wall_show_projection_to integer

vertical view depth limitation of the wall: 1 - To Floor Plan Range, 2 - To Absolute Display Limit, 3 - Entire Element

Geometric data

ac_wall_elevation length

elevation of the wall bottom, relative to home story of the wall

ac_wall_crosssection_type integer

wall cross section type: 1 - Simple, 2 - Complex, 3 - Slanted, 4 - Trapezoid

ac_wall_profile_name string

profile name if the wall is complex with profile attribute, "Custom_Profile_i" if complex: with custom profile (i being the id of the placed wall) or "n/a" if the wall is simple,
slanted or trapezoid

ac_wall_slant_anglel angle

Sfirst slant angle of the wall relative to the horizontal (90 degrees if the wall is vertical)

ac_wall_slant_angle2 angle

second slant angle of the wall relative to the horizontal (90 degrees if the wall is vertical)

ac_wall_direction_type integer

wall direction type; the construction method of the wall, which means the adjustment of the wall body and the reference line: O - Right, 1 - Left, 2 - Center (Right), 3 - Center (Lef?).
Center values mean that the wall is set to 'Center' in the user interface, but the side notation shows how the wall acts internally.

GDL Reference Guide 360

Miscellaneous

Parameters for COLUMN attributes (available for Label, Listing)

Floor plan display

ac_colu_overhead_pen pen

pen of the above view edges of the column (overhead) [floor plan only]

ac_colu_overhead_linetype linetype

line type of the above view edges of the column (overbead) [floor plan only]

ac_colu_uncut_linetype linetype

line type of the below view edges of the column (uncut) [floor plan only]

ac_colu_display_option integer

floor plan display option of the column: 1 - Projected, 2 - Projected with Overbead, 3 - Symbolic, 4 - OntLines Only, 5 - Overbead All

ac_colu_show_projection_to integer

vertical view depth limitation of the column: 1 - To Floor Plan Range, 2 - To Absolute Display Limit, 3 - Entire Element

Geometric data

ac_colu_crosssection_type integer

column cross section type: 1 - Rectangnlar, 2 - Round, 3 - Complex:

profile name if the column is complex: with profile attribute, ""Custons_Profile_i" if complex: with custom profile (i being the id of the placed colunmn) or "n/a" if the colunm is

ac_colu_profile_name string
rectangular or round
ac_colu_inclination angle

inclination angle of the column relative to the horigontal line

ac_colu_twist_angle angle

twist angle of the cross section

GDL Reference Guide

361

Miscellaneous

Parameters for BEAM attributes (available for Label, Listing)

Floor plan display

ac_beam_overhead_pen pen

pen of the above view edges of the beam(overhead) [floor plan only]

ac_beam_overhead_linetype linetype

line type of the above view edges of the beam (overhead) [floor plan only]

ac_beam_uncut_pen pen

pen of the below view edges of the beam (uncut) [floor plan only]

ac_beam_uncut_linetype linetype

line type of the below view edges of the beam (uncut) [floor plan only]

ac_beam_display_option integer

Sloor plan display option of the beam: 1 - Projected, 2 - Projected with Overhead, 3 - Symbolic, 4 - Outlines Only, 5 - Overhead All

ac_beam_show_projection_to integer

vertical view depth limitation of the beam: 1 - To Floor Plan Range, 2 - To Absolute Display Limit, 3 - Entire Element

Geometric data

ac_beam_crosssection_type integer

beam cross section type: 1 - Rectangular, 2 - Complex:

ac_beam_profile_name string

profile name if complex: with profile attribute, ""Custom_Profile_i" if complex with custom profile (i being the id of the placed beam) or "'n/a" if the beam is rectangnlar

ac_beam_inclination angle

inclination angle of the beam relative fo the horigontal line

ac_beam_twist_angle angle

twist angle of the cross section (0.0 for non-complex beams)

GDL Reference Guide

362

Miscellaneous

Parameters for ROOF attributes (available for Label, Listing)

Floor plan display

ac_roof_overhead_pen

pen

pen of the above view edges of the roof (overhead) [floor plan only]

ac_roof_overhead_linetype

linetype

line type of the above view edges of the roof (overhead) [floor plan only]

ac_roof_display_option

Sloor plan display option of the roof: 1 - Projected, 2 - Projected with Overhead, 3 - Symbolic, 4 - Outl_ines Only, 5 - Overhead All

integer

ac_roof_show_projection_to

vertical view depth limitation of the roof: 1 - To Floor Plan Range, 2 - To Absolute Display Limit, 3 - Entire Element

integer

Door/Window Marker attributes

ac_wido_id

string

ID of the opening

ac_wido_a_size length
opening width

ac_wido_b_size length
opening height

ac_wido_z_size length
opening depth/ thickness

ac_glob_elevation length
elevation of the base line of the opening

ac_wido_subfl_thickness length

height of the subfloor wall part

GDL Reference Guide

363

Miscellaneous

ac_wido_reveal_side boolean

legacy gpening reveal side value, use ac_wido_reveal_side_2 instead

ac_wido_reveal_side_2 boolean

reveal side, the value of the WIDO_REVEAL_SIDE global variable set for the gpening

ac_wido_mirrored boolean

mirrored state of the opening

ac_wall_thickness length

thickness of the wall at the origin of the opening

ac_wido_oversize_1 length
left opening oversize
ac_wido_oversize_r length

right opening oversizge

ac_wido_oversize_t length

top opening oversize

ac_wido_oversize_b length

bottom gpening oversize

ac_wido_orientation string

marker position: "L" - Left, "R" - right, or any custom value set in the Details window of the library part editor according to the current mirrored state

ac_wido_type integer

1 - Door, 2 - Window

ac_symb_rotangle angle

opening rotation in the wall

ac_sill_to_curr_story length

sill height of the opening measured from the start of the story linked to the window sill

GDL Reference Guide 364

Miscellaneous

ac_sill_to_anchor_level

sill height of the opening measured from the level of the anchor point; the anchor point may be the bottom of the wall or the selected story, accordingly

length

Detail/Worksheet Marker attributes

ac_showboundary

boolean

Marker boundary pobygon state. 0 - boundary off; 1 - boundary on.

Curtain wall accessory attributes

ac_frameWidthLeft length
Reference frame contour width 1 (nsually a/2)

ac_frameWidthRight length
Reference frame contour width 2 (nsually a/ 2)

ac_frameWidthFront length
Reference frame contour length 1 (usually b/ 2)

ac_frameWidthBack length
Reference frame contour length 2 (usually b/ 2)

ac_accessoryFlipped boolean

Accessory flipped state. 0 - not flipped, 1 - flipped

ac_globalZDir

Veector of local 3 direction in the global coordinate system

length, array

ac_validCellAnglel boolean
Defines if there is cell 1 or not

ac_validCellAngle2 boolean
Defines if there is cell 2 or not

ac_cellAnglel angle

The accessory's frame can be connected to maximum 2 cells. These cells are celll and cell2. Celll is the cell with the smaller angle from local Y direction, considering the positive

direction of local X. Parameter ac_cellAnglel is the angle between celll and local Y direction.

GDL Reference Guide

365

Miscellaneous

ac_cellAngle2 angle

The accessory's frame can be connected to maxcimum 2 cells. These cells are celll and cell2. Cell2 is the cell with the greater angle from local Y direction, considering the positive direction
of local X. Parameter ac_cellAngle2 is the angle between cell2 and local Y direction.

Drawing Title attributes

ac_drawingName string

Name of the drawing.

ac_drawingNumber string

ID of the drawing.

ac_sourceFileName string

Name of the drawing sonrce file (if the drawing comes from an external file).

ac_sourceFilePath string

Path of the drawing source file (if the drawing comes from an external file).

ac_drawingScale string

Drawing scale set for the drawing.

ac_magnification real number

Magnification percentage set for the drawing.

ac_originalDrawingScale string

Drawing scale of the originating view.

ac_enableBackReference boolean

Back referencing is enabled for the drawing.

ac_backReferenceGUIDList string array

List of referred layont GUIDs. They can be used in antotext ontputs.

ac_showDrawingReferences boolean

Show back references.

GDL Reference Guide 366

Miscellaneous

General running context

ac_programVersion integer

This parameter contains the version of ARCHICAD executing the library part's scripts.

GDL Reference Guide 367

Miscellaneous

Room parameters (available for Zone Stamps)

Name Type Default Description

ROOM_NAME String " Zone name

ROOM_NUMBER String " Zone number

ROOM_LSIZE Real 0.0 Font size

ROOM_AREA Real 0.0 Area of gross/net polygon

ROOM_PERIM Length 0.0 Petimeter of gross/net polygon
ROOM_HOLES_PRM Length 0.0 Perimeter of net polygon holes
ROOM_WALLS_PRM Length 0.0 Perimeter of net polygon (with holes) but only where bordered by wall
ROOM_CORNERS Integer 0 Corners of net polygon (with holes)
ROOM_CONCAVES Integer 0 Concave corners of net polygon (with holes)
ROOM_WALLS_SURF Real 0.0 Bordering walls' surfaces (bordering parts)
ROOM_DOORS_WID Real 0.0 Doors' lengths at border
ROOM_DOORS_SURF Real 0.0 Doorts' surfaces at border
ROOM_WINDS_WID Length 0.0 Windows' lengths at border
ROOM_WINDS_SURF Real 0.0 Windows' surfaces at border
ROOM_BASELEV Length 0.0 Zone level

ROOM_FI._THICK Length 0.0 Zone subfloor thickness

ROOM_HEIGHT Length 0.0 Zone height

ROOM_NET_AREA Real 0.0 Area of net polygon (with holes)
ROOM_NET_PERIMETER Length 0.0 Perimeter of net polygon (with holes)
ROOM_WALL_EXTR_AREA Real 0.0 Reducing area by walls inside zone (not zone boundary typel)

GDL Reference Guide 368

Miscellaneous

Name
ROOM_COLUMN_EXTR_AREA
ROOM_FILL_EXTR_AREA
ROOM_LOW_EXTR_AREA
ROOM_TOTAL_EXTR_AREA
ROOM_REDUCED_AREA
ROOM_AREA_FACTOR
ROOM_CALC_AREA
ROOM_VOLUME
ROOM_BOUNDARY_SURF
ROOM_TOP_SURFACE
ROOM_BOT_SURFACE
ROOM_ROOF_TOP_SURF
ROOM_ROOF_BOT_SURF
ROOM_SLAB_TOP_SURF
ROOM_SLAB_BOT_SURF
ROOM_BEAM_TOP_SURF
ROOM_BEAM_BOT_SURF
ROOM_WALL_IN_TOP_SURF
ROOM_WALIL_IN_BACK_SURF
ROOM_WALI_IN_SIDE_SURF
AC_TextFont_1
ROOM_POLY_STATUS

Type
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
String

Integer

Default Description

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0

Reducing area by columns inside zone (not zone boundary type!)
Reducing area by hatches inside zone (considering percentage!)
Reducing area by low parts (trimmed) (considering preferences!)
Sum of previous values (total extraction)
ROOM_NET_AREA - ROOM_TOTAL_EXTR_AREA

1 - Reduced_by_in_dialog / 100
ROOM_REDUCED_AREA * ROOM_AREA_FACTOR
Calculated from trimmed room upon net polygon

Surface of boundary side pages

Surface of zone top

Surface of zone bottom

Surface of zone top where trimmed by a Roof

Surface of zone bottom where trimmed by a Roof

Surface of zone top where trimmed by a Slab

Surface of zone bottom where trimmed by a Slab

Surface of zone top where trimmed by a Beam

Surface of zone bottom where trimmed by a Beam

Sum of top surfaces of wall insets (or recess or niche)

Sum of back surfaces of wall insets (facing to window)

Sum of side surfaces of wall insets

Zone main text font

0:manual, 1:Auto, 2:Auto-refline

GDL Reference Guide

369

Miscellaneous

Parameters read by ARCHICAD

ARCHICAD can get values from library parts through parameters with predefined name and function. The list of such parameters follows below.

Objects on Floor Plan

Floor plan cutting of planar elements (i.e. skylight object, roof accessory objects)

ac_special_2d_symbol boolean

This parameter enables a 2D cutting mechanism in ARCHICAD floor plan. If the parameter is set to 1, ARCHICAD cuts the 2D model (generated by the 2D script of the
libpart) according to the parameter values in: ac_symb_display_option, ac_symb_show_projection_to and ac_plane_definition. This 2D-based cut works like the display of simple
roofs with the same settings. Naturally, this method gives correct ontput for plane-like elements only - like skylights and roof accessories. The plane of the flat object - and the plane
of the cut - is defined by the parameter ac_plane_definition. In case of Skylight and Roof Accessory elements - if ac_special_2d_symbol is 1 -, the above parameters are set by the
add-on antomatically. In case of other elements, they should be filled in by the library developer.

ac_plane_definition length

Plane definition: ([1],/2],/3]): a point on the plane, ([4],/5],/6]): normal vector of the plane.

ac_symb_display_option integer

1 - Projected, 2 - Projected with Overhead, 3 - Symbolic, 4 - Outl_ines Only, 5 - Overhead All

ac_symb_show_projection_to integer

1 - To Floor Plan Range, 2 - To Absolute Display Limit, 3 - Entire Element

ac_bottomlevel length

This parameter indicates the lowest point of the object. When Show on Stories is set to All Relevant Stories, if this lowest point (calculated from the object's home story settings) is
contained in a story's vertical extension, the object is displayed on the story. Top level has to be above the bottom level.

ac_bottomlevel staris from the object origin of the object.

ac_toplevel length

When Show on Stories is set to All Relevant Stories this parameter tells the top of the object. The object will be visible on a story if the story's height is between the bottomlevel
and the toplevel. Top level has to be above the bottom level.

ac_toplevel starts from the object origin of the object.

GDL Reference Guide 370

Miscellaneous

Door/Window objects

ac_wido_sill length

This parameter provides full access to the sill depth of the opening object. The parameter can get a value list, it can be locked and hidden and its value can be set via the parameter
seript. 1ts current value will be assigned to the WIDO_SILL global variable for compatibility with older scripts.

ac_wido_hide_options integer

Via this bitfield parameter you can disable options from the window/ door settings dialog. ac_wido_hide_options = j1 + 2%2. Ifj1 is set, the sill depth inputs on the
defanlt ARCHICAD settings dialog is bidden. 1f j2 is set, the reveal settings in the settings dialog are disabled.

ac_wido_flip_once boolean

Flips the window or door once after the execution of the migration script if the parameter is present and its value is true.

ac_wido_flip_disable integer
This parameter can disable the "Flip"" button on the user interface. The default value affects only the placing of the object.
-1: Flip is enabled.
0: Flip is disabled. The defanit is not flipped.
1: Flip is disabled. The defanlt is flipped.

ac_wido_mirror_once boolean

Mirrors the window or door once after the execution of the migration script if the parameter is present and its value is true.

ac_hole_hotspot_control integer

Controls whether openings have automatic hotspots. 0 - No automatic hotspots, 1 - Only in 2D, 2 - Only in 3D, 3 - Everywhere

Curtain wall panel attributes

ac_originIsFrameCenter boolean

If the parameter is present and its value is true, the panel origin is in the center point of the starting (left) frame. Otherwise, the origin is in the starting point of the left clamp.

ac_aSizelsWithClamp boolean

If the parameter is present and its value is true, ARCHICAD sets the A size as the distance between the frames plus the clamps' size. Otherwise, the A size is measured between
the frames.

GDL Reference Guide 371

Miscellaneous

Custom Component Template

ac_custom_component_type_name string

This parameter contains the name of the Custom Component Template which is displayed on the "Save Component As..." menu. It can differ from the object name.

Zone Stamp parameters

ac_disable_controls integer

This parameter can control the visibility of the Font Sige input area of the Zone Stamp settings dialog: 0 or the object doesn't have the parameter - show Font Size, 1 - hide Font
Size (therefore allowing extra space for the parameter list)

Label paremeters

ac_bDisableLabelFrameDisplay boolean
Compatibility: introduced in ARCHICAD 20.

Hides the built-in rectangular frame drawing aronnd the Label Symbol in case of the built-in Pointer and Frame is set, enabling the user to script custom shaped frame.

ac_bCustomPointerConnection boolean

Compatibility: introduced in ARCHICAD 20.

Controls the automatic Pointer Connections of the Label Symbol in case of the built-in Pointer is set. If this parameter is set to ON, 6 hotspots can be defined in the 2D script for the
custom pointer connection in accordance with the built-in types. These hotspots should have fix ID-s from 1 to 6. The ID's indicate the following connection positions:
If the Pointer is on the left side of the Label Symbol:

o 1: left top connection

o 3: left middle connection

o 5. left bottom connection

* 6. right bottom connection

If the Pointer is on the right side of the Label Symbol:

o 2: right top connection

o 4: right middle connection

* 6. right bottom connection

o 5. left bottom connection

Parameters for add-ons

Add-ons can get values from library parts through parameters with predefined name and function. The list of such parameters related to
ARCHICAD package add-ons follows below.

GDL Reference Guide 372

Miscellaneous

Parameters of Skylight add-on

Hole edge cut manipulation

ac_edge_lower_type integer

Cut type of the lower edge: 0 - Vertical, 1 - Perpendicular, 2 - Horigontal, 3 - Custom

ac_edge_lower_angle angle

Angle of the cut of the lower edge, if ac_edge_lower_type is 3. The value range is [1-179] degrees, 90 is the perpendicular case.
ac_edge_upper_type integer

Cut type of the upper edge: 0 - Vertical, 1 - Perpendicular, 2 - Horizontal, 3 - Custom

ac_edge_upper_angle angle

Angle of the cut of the upper edge, if ac_edge_upper_type is 3. The value range is [1-179] degrees, 90 is the perpendicular case.

Parameters of Corner Window add-on

Basic parameters of Corner Window objects

ac_cw_function boolean

Window place mode, controlled by the add-on. O - Window, 1 - Corner window

ac_corner_window boolean

Corner window mode selector, controlled by the object. O - Disable corner window mode, 1 - Enable corner window mode

ac_corner_angle angle

Angle between the connected walls.

ac_diff con_wall_thk boolean

Albways true (1). 1t is a historical feature showing whether the connected wall has a different thickness from the containing wall.

ac_con_wall_thk length

Thickness of the connected wall.

ac_cw_debug boolean

For internal usage only. Aspect of GDL programmers have no inferest.

GDL Reference Guide 373

Miscellaneous

Wall skins data parameters of Corner Window objects (available from ARCHICAD 12)

ac_con_wall_skins_number

integer

Number of skins in the connected wall. In case of solid walls it is zero.

ac_con_wall_skins_params

length
Parameters of the connected composite wall skins. Same as the WALL_SKINS_PARAMS GDL global parameter of the owner wall.

ac_con_wall_direction_type

integer

Connected wall flipped state; the flipped state of the wall, which means the adjustment of the wall body and the reference line: 0 - not flipped, 1 - flipped. (old meaning: O - Right,
1 - Left, 2 - Center (Right), 3 - Center (Left).)

Parameters of IFC add-on

Common basic parameters of Door and Window objects

ifc_LiningDepth length
Thickness of the door/ window frame.

ifc_LiningThickness length
Width of the door/ window frame.

ifc_TransomThickness length

Width of the transom.

GDL Reference Guide 374

Miscellaneous

IFC2x_ConstEnum integer / string

This parameter defines the basic types of construction of doors/ windows.

ifc_ConstEnum (integer) IFC2x_ConstEnum (string) ~ IfcDoorStyleConstructionEnum category
parameter value parameter value IfcWindowStyleConstructionEnum category
0 Not Defined NOTDEFINED

1 Aluminum ALUMINIUM

2 High Grade Steel HIGH_GRADE_STEEL

3 Steel STEEL

4 Wood WOOD

5 Aluminum Wood ALUMINIUM_WOOD

6 Aluminum Plastic ALUMINIUM_PILASTIC

7 Plastic PLASTIC

8 User Defined USERDEFINED

GDL Reference Guide 375

Miscellaneous

Basic parameters of Door objects

ifc_optype - Doors

integer / string

Door Opening Type, controlled by the IFC_optype_door.gsm macro.

ifc_optype (integer)
parameter value

0

ifc_optypestr (string)
parameter value

Not Defined

Single Door Single Swing

IfcDoorStyleOperationEnum category

NOTDEFINED
SINGLE_SWING_LEFT
SINGLE_SWING_RIGHT

2 Double Door Single Swing DOUBILE_DOOR_SINGILE_SWING
DOUBLE_SWING_LEFT
3 Single Door Double Swing
DOUBLE_SWING_RIGHT
4 Double Door Double Swing DOUBLE_DOOR_DOUBLE_SWING
DOUBLE_DOOR_SINGLE_SWING_OPPOSITE_LEFT
5 Double Door Single Swing Opposite
DOUBLE_DOOR_SINGLE_SWING_OPPOSITE_RIGHT
SLIDING_TO_LEFT
6 Single Door Sliding
SLIDING_TO_RIGHT
7 Double Door Sliding DOUBLE_DOOR_SLIDING
FOLDING_TO_LEFT
8 Single Door Folding
FOLDING_TO_RIGHT
9 Double Door Folding DOUBLE_DOOR_FOILDING
10 Revolving REVOLVING
11 Rolling Up ROLLINGUP
12 Other USERDEFINED
ifc_LiningOffset length
Offset of the door frame.
GDL Reference Guide 376

Miscellaneous

ifc_CasingDepth length
Thickness of the door casing.

ifc_CasingThickness length
Width of the door casing.

ifc_ThresholdDepth length
Deptly of the door threshold.

ifc_ThresholdThickness length
Thickness of the door threshold.

ifc_ThresholdOffset length
Offset of the door threshold.

ifc_TransomOffset length

Offset of the transom.

GDL Reference Guide

377

Miscellaneous

ifc_DoorPanel length - array

ife_DoorPanel[x][1] - thickness of the door sash.
ifec_DoorPanel|x][2] - width of the door sash.

ifc_DoorPanel[x][3] parameter value IfcDoorPanelOperationEnum category
0 NOTDEFINED

1 SWINGING

2 DOUBLE_ACTING

3 SLIDING

4 FOLDING

5 REVOLVING

6 ROLLINGUP

7 USERDEFINED

ifc_DoorPanellxl[4] parameter value IfcDoorPanelPositionEnum category
0 NOTDEFINED

1 LEFT
2 MIDDLE

RIGHT

GDL Reference Guide 378

Miscellaneous

Basic parameters of Window objects

ifc_optype - Windows integer / string

Window Opening Type, controlled by the IFC_aptype_door.gsm macro.

ifc_optype (integer) ifc_optypestr (string) IfcWindowStyleOperationEnum category

parameter value parameter values
0 Not Defined NOTDEFINED
1 Single SINGLE_PANEL
2 Double Vertical DOUBLE_PANEI., VERTICAL
3 Double Horizontal DOUBLE_PANEI, HORIZONTAL
4 Triple Vertical TRIPLE_PANEIL, VERTICAL
5 Triple Horizontal TRIPLE_PANEI, HORIZONTAL
6 Triple Bottom TRIPLE_PANEIL, BOTTOM
7 Triple Top TRIPLE_PANEIL,_TOP
P Toiple Laf TRIPLE_PANEIL, LLEFT
TRIPLE_PANEIL, RIGHT
P Triple Right TRIPLE_PANEIL,_ RIGHT
TRIPLE_PANEIL, RIGHT
10 Other USERDEFINED
ifc_MullionThickness ifc_MullionThickness - length
Width of the mullion.
ifc_FirstMullionOffset ifc_FirstMullionOffset - length

Offset of the mullion centerline.

ifc_SecondMullionOffset ifc_SecondMullionOffset - length
Offset of the mullion centerline of the second mullion.

ifc_FirstTransomOffset ifc_FirstTransomOffset - length

Offset of the transom centerline.

GDL Reference Guide 379

Miscellaneous

ifc_SecondTransomOffset ifc_SecondTransomOffset - length

Offset of the transom centerline for the second mullion.

GDL Reference Guide 380

Miscellaneous

ifc_WindowPanel length - array

ife_WindowPanel[x][1] - thickness of the window sash.
ife_WindowPanel|x][2] - width of the window sash.

ifc_WindowPanellx][3] parameter value IfcWindowPanelOperationEnum category
0 NOTDEFINED
SIDEHUNGRIGHTHAND
SIDEHUNGLEFITHAND
TILTANDTURNRIGHTHAND
TILTANDTURNLEFTHAND
TOPHUNG

BOTTOMHUNG
PIVOTHORIZONTAL
PIVOTVERTICAL
SLIDINGHORIZONTAL
SLIDINGVERTICAL
REMOVABLECASEMENT
FIXEDCASEMENT

13 OTHEROPERATION

A ST O L R e N

~ =N =
N = D

ifc_WindowPanel[x][4] parameter value IfcWindowPanelPositionEnum category

0 NOTDEFINED
1 LEFT

2 MIDDLE

3 RIGHT

4 BOTTOM

5 TOP

GDL Reference Guide 381

Miscellaneous

Basic parameters of Transport Elements

ifc_optype - Transport Elements integer

Type choice for Transport Element.

ifc_optype (integer) parameter value IfcTransportElementTypeEnum category

0 NOTDEFINED

1 ELLEVATOR

2 ESCALATOR

3 MOVINGWALKWAY
4 USERDEFINED

Basic parameters of Lift objects

ifc_CapacityByWeight realnum
Capacity of the transport element measured by weight.

ifc_CapacityByNumber integer

Capacity of the transportation element measured in number of persons.

GDL Reference Guide 382

Miscellaneous

Basic parameters of Stair objects

ifc_StairType

integer

The basic configuration of the stair type in terms of the number of stair flights and the number of landings, controlled by the StairMatker add-on for the built-in stairs.

0 Not Defined

-

StraightRunS tair
TwoStraightRunStair
QuarterWindingStair
QuarterTurnStair
HalfWindingS tair
HalfTnrnStair
TwoQuarterW indingS tair

TwoQuarterTurnStair

D 2 NN N W N

ThreeQuarterW indingStair

-
S

ThreeQuarterTurnStair

~
EN

SpiralStair
DoubleReturnS tair
CurvedRunS tair
TwoCurvedRunStair
15 OtherOperation

-~ = =
KON N

ifc_NumberOfRiser

integer
Total number of visers in the stair.
ifc_NumberOfTreads integer
Total number of treads in the stair.
ifc_RiserHeight integer

Vertical distance from tread to tread. The riser beight is supposed to be equal for all steps of a stair or stair flight.

GDL Reference Guide

383

Miscellaneous

ifc_TreadLength

integer

Horizontal distance from the front of the tread to the front of the next tread. The tread length is supposed to be equal for all steps of the stair or stair flight at the walking line.

Basic parameters of MEP elements

ifc_subtype
1 IfeAirTerminalBox'Dype
2 IfeAirTerminalType
3 IfeAirToAirHeatRecovery Type
4 IfeBoilerType
5 IfeChillerType
6 IfeCoilType
7 IfeCompressorDype
8 IfeCondenser Dype
9 IfeCooledBean: Type
10 IfeCoolingTowerType
11 IfeDamperType
12 IfeDuctFittingDype
13 IfeDuctSegmentType
14 IfeDuctSilencer Type
15 IfeEvaporativeCoolerType
16 IfcEvaporatorType
17 IfcFanType
18 IfcFilterType
19 IfeFlowMeterType
20 IfeGasTerminalType

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

integer

IfeHeatExchangerType
IfeHumidifier Type
IfePipeFittingType
IfePipeSegment Dype

1ePump Type
IfeSpaceHeater Type

IfcTank Type
IfeTubeBundle Type
IfeUnitaryEquipmentType
IfeValveType
IfeVibrationlsolator Type
IfcFireSuppressionTerminallype
IfeSanitaryTerminalType
IfeStack Terminalype
IfeWasteTerminalType
IfeCableCarrierFitting Dype
IfeCableCarrierSegmentype
IfeCableSegmentIype
IfeElectricAppliance Dype
this value is skipped

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

IfeElectricElowS torageDevice Type
IfeElectricGeneratorType
IfeElectricHeater Type
IfeElectrieMotorType
IfeElectricTimeControlType
this value is skipped
IfeJunctionBoxType
VeLamp Type
IfelightFixture Dype
IfeMotorConnectionType
IfeOutletType
IfeProtectiveDevice Type
IfeSwitchingDevice Type
IfcTransformerType
IfeActnatorType

IfeAlarn Type
IfeControllerType
IfcElowlnstrumentType
IfeSensorType

GDL Reference Guide

384

Miscellaneous

REQUEST OPTIONS

REQUEST (question name, name | index, variablel [, variable2, ...])

The first parameter represents the question string while the second represents the object of the question (if it exists) and can be of either string
or numeric type. The other parameters are variable names in which the return values (the answers) are stored. The function’s return value is the
number of the answer (in the case of a badly formulated question or a nonexistent name, the value will be 0).

Request Parameter Script Compatibility

The use of most requests in parameter scripts (or master scripts run as parameter script) can result in unstable returned values, therefore should
be avoided.

Compatibility up to ARCHICAD 19: The use of most requests in parameter scripts (or master scripts run as parameter script) counld result in unreliable returned values.
Compatibility starting from ARCHICAD 20: the following applies in parameter script cases:

o the request expression will always have 0 as success return value
o the requested values will contain a type-matching defanlt only (empty string or 0)

Using restricted requests in the parameter script will also generate GDL warnings starting from ARCHICAD 19.

To check the parameter script compatibility, refer to the tables below.:

Legend:
(/) works without restriction
' works (with additional warning)
(—) does not work: expression returns 0, while containing dummy type-
matching defaults in returned variables (empty string or 0) - with
additional warning

GDL Reference Guide 385

Miscellaneous

Compatibility in Parameter Script

ARCHICAD 18

ARCHICAD 19

ARCHICAD 20

ANCESTRY_INFO

o

e

ANGULAR_DIMENSION

ANGULAR_LENGTH_DIMENSION

AREA_DIMENSION

ASSOCEL_PROPERTIES

ASSOCLP_NAME

ASSOCLP_PARVALUE

ASSOCLP_PARVALUE_WITH_DESCRIPTION

QOO QOO

AUTOTEXT_LIST

0 Q00000

Compatibility in Parameter Script

ARCHICAD 18

ARCHICAD 19

ARCHICAD 20

BUILDING_MATERIAL_INFO

o

e

GDL Reference Guide

386

Miscellaneous

Compatibility in Parameter Script ARCHICAD 18 | ARCHICAD 19 | ARCHICAD 20
CALC_ANGLE_UNIT (V] 1 (—)
CALC_AREA_UNIT (/] ! (—]
CALC_LENGTH_UNIT (V] (V] (v)
CALC_VOLUME_UNIT (V] (V) (V)
CLASS_OF_FILL (/] (/] (v)
CLEAN_INTERSECTIONS (V) ! (—)
COMPONENT_PROJECTED_AREA (/] ' (—)
COMPONENT_VOLUME (V) ! (—)
CONFIGURATION_NUMBER (-]
CONSTR_FILLS_DISPLAY (V) 1 (—)
CUSTOM_AUTO_LABEL (/] ' (—)
Compatibility in Parameter Script ARCHICAD 18 | ARCHICAD 19 | ARCHICAD 20
DOOR_SHOW_DIM (v ' (—)
Compatibility in Parameter Script ARCHICAD 18 | ARCHICAD 19 | ARCHICAD 20
ELEVATION_DIMENSION (V) ! (—)

GDL Reference Guide

387

Miscellaneous

Compatibility in Parameter Script ARCHICAD 18 | ARCHICAD 19 | ARCHICAD 20
FLOOR_PLAN_OPTION (V] 1 (—)
FONTNAMES_LIST (/] (/) (/)
FULL_ID_OF_PARENT ' (—)
Compatibility in Parameter Script ARCHICAD 18 | ARCHICAD 19 | ARCHICAD 20
HEIGHT_OF_STYLE (V] (V] (v
HOME_STORY (/] (/) (V]
HOME_STORY_OF_OPENING (V] (V] (v
HOMEDB_INFO (V) (V) (V)
Compatibility in Parameter Script ARCHICAD 18 | ARCHICAD 19 | ARCHICAD 20
ID_OF_MAIN (V] ! (—)
INTERNAL_ID (v) (v (v)
Compatibility in Parameter Script ARCHICAD 18 | ARCHICAD 19 | ARCHICAD 20
LAYOUT_LENGTH_UNIT (v) ' '
LAYOUT_TEXT_SIZE_UNIT (V) (V) (V)
LEVEL_DIMENSION (/] ' (—)
LINEAR_DIMENSION (V) (V) (V)

GDL Reference Guide

388

Miscellaneous

Compatibility in Parameter Script ARCHICAD 18 | ARCHICAD 19 | ARCHICAD 20
MATCHING_PROPERTIES) ')
MATERIAL_INFO) ' e
MODEL_LENGTH_UNIT) ' '
MODEL_TEXT_SIZE_UNIT) ' e
Compatibility in Parameter Script ARCHICAD 18 | ARCHICAD 19 | ARCHICAD 20
NAME_OF_FILL) ' e
NAME_OF_LINE_TYPE V) ')
NAME_OF_LISTED) ' e
NAME_OF_MACRO V) o 0
NAME_OF_MAIN) (V) (V)
NAME_OF_MATERIAL V) ')
NAME_OF_PLAN (/) ' -]
NAME_OF_PROGRAM) ' e
NAME_OF_STYLE (/) ' -]

GDL Reference Guide

389

Miscellaneous

Compatibility in Parameter Script ARCHICAD 18 | ARCHICAD 19 | ARCHICAD 20
PEN_OF _RGB () ' ()
PROGRAM_INFO o o o
PROPERTIES_OF PARENT)
PROPERTY_NAME @
PROPERTY_VALUE_OF PARENT)
Compatibility in Parameter Script ARCHICAD 18 | ARCHICAD 19 | ARCHICAD 20
RADIAL_DIMENSION o , @
REFERENCE_LEVEL_DATA o o o
RGB_OF_MATERIAL o , @
RGB_OF_PEN () ' —]
Compatibility in Parameter Script ARCHICAD 18 | ARCHICAD 19 | ARCHICAD 20
SILL_HEIGHT DIMENSION o o o
STORY o , @
STORY_INFO o o o
STYLE_INFO) ' '
SUM_WITH_ROUNDING P

GDL Reference Guide

390

Miscellaneous

Compatibility in Parameter Script ARCHICAD 18 | ARCHICAD 19 | ARCHICAD 20
TEXTBLOCK_INFO (v ' (—)
Compatibility in Parameter Script ARCHICAD 18 | ARCHICAD 19 | ARCHICAD 20
VIEW_ROTANGLE (V) (V) (v]
WINDOW_DOOR_DIMENSION (/] (/] (/)
WINDOW_DOOR_SHOW_DIM (V] 1 (—)
WINDOW_DOOR_ZONE_RELEV (/]]]
WINDOW_DOOR_ZONE_RELEV_OF_OWNER 0 ' '
WINDOW_SHOW_DIM (V] ! (—]
WORKING_ANGLE_UNIT (/] 1 '
WORKING_LENGTH_UNIT (V) (V) (v]
Compatibility in Parameter Script ARCHICAD 18 | ARCHICAD 19 | ARCHICAD 20
ZONE_CATEGORY (V] (V) (V]
ZONE_COLUS_AREA (/] ' (—)
ZONE_RELATIONS (V) (V) (v]
ZONE_RELATIONS_OF_OWNER (/] ! '

Details of Requests

REQUEST ("Name_of program", "",

program name)

GDL Reference Guide

391

Miscellaneous

Returns in the given variable the name of the program, e.g., "ARCHICAD". Expression returns O and contains dummy return values (emtpy string or
0) if used in parameter script, causing additional warning.

Example 1: Printing the name of the program
n=REQUEST ("Name of program", "", program name)
PRINT program name
REQUEST ("Name_of_macro", "", my name)
REQUEST ("Name_of main", "", main name)
After executing these function calls, the my_name variable will contain the name of the macro, while main_name will contain the name of the
main macro (if it doesn’t exist, empty string).
REQUEST ("ID of main", "", id string)
For library parts placed on the floor plan, returns the identifier set in the tool’s settings dialog box in the id_string vatiable (otherwise empty
string). Not working on annotation elements (e.g. Label, D/W Marker, Zone Stamp). Expression returns O and contains dummy return values (emtpy
string or 0) if used in parameter script, cansing additional warning.
REQUEST ("Full ID of parent", "", id string)
For annotation elements linked or hotlinked on the floor plan, returns all identifiers (Master ID) of the linked modules and the parent library
parts’ identifier set in the tool’s settings dialog box in the id_string variable (otherwise empty string). Expression returns 0 and contains dummy return
values (emtpy string or 0) if used in parameter script, cansing additional warning.
REQUEST ("Name of plan", "", name)
Returns in the given variable the name of the current project. Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter
script, causing additional warning.
REQUEST ("Story", "", index, story name)
Returns in the index and story_name variables the index and the name of the current story. Expression returns O and contains dummy return values
(emitpy string or 0) if used in parameter script, cansing additional warning.
REQUEST ("Home_story", "", index, story name)
Returns in the index and story_name variables the index and the name of the home story.
REQUEST ("Home_story of opening", "", index, story name)
Returns the index and the name of the home story of the opening in the index and story_name variables. The home story is the first story,
where the opening is visible. Can be used in scripts of doors, windows, wallends, corner windows and skylights, and in the script of their labels
and markers. Causes warning if used in parameter script.
REQUEST ("Story info", expr, nStories,

index1l, namel, elevl, heightl [,

index2, name2, ...])

GDL Reference Guide 392

Miscellaneous

Returns the story information in the given variables: number of stories and story index, name, elevation, height to next successively. If expr is a
numerical expression, it means a story index: only the number of stories and the information on the specified story is returned. If expr is a string
expression, it means that information on all stories is requested. The return value of the function is the number of successfully retrieved values.

Example 2:

DIM t[]
n = REQUEST ("STORY INFO", "", nr, t)
FOR i = 1 TO nr
nr = STR ("%.0m", t [4 * (1 - 1) + 17])
name = t [4 * (1 - 1) + 2]
elevation = STR ("%m", t [4 * (i - 1) + 31)
height = STR ("Sm", t [4 * (1 - 1) + 4])
TEXT2 0, -i, nr + "," + name + "," + elevation + "," + height
NEXT i

With the following requests, you can learn the dimension formats set in the Options/Preferences/Dimensions and Calculation Units dialog
boxes. These requests return a format string that can be used as the first parameter in the STR () function.

REQUEST ("Linear_ dimension", "", format string)
REQUEST ("Angular dimension", "", format string)

Expression returns 0 and contains dummry return values (emtpy string or 0) if used in parameter script, causing additional warning.
REQUEST ("Angular length_dimension", "", format string)

Expression returns 0 and contains dummy return values (entpy string or 0) if used in parameter script, cansing additional warning.
REQUEST ("Radial dimension", "", format string)

Causes warning if used in parameter script.

REQUEST ("Level dimension", "", format string)

Causes warning if used in parameter script.

REQUEST ("Elevation_dimension", "", format string)

Expression returns 0 and contains dummry return values (emtpy string or 0) if used in parameter script, causing additional warning.

REQUEST ("Window_door_dimension", "", format string)
REQUEST ("Sill height dimension", "", format string)
REQUEST ("Area_dimension", "", format string)
REQUEST ("Calc_length unit", "", format string)
REQUEST ("Calc_area unit", "", format string)

Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.

GDL Reference Guide 393

Miscellaneous

REQUEST ("Calc volume unit", "", format string)

REQUEST ("Calc_angle unit", "", format string)

Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.

Example 3:

format = "" num = 60.55
REQUEST ("Angular dimension", "",format)!"%.2dd"
TEXT2 0, 0, STR (format, num)!60.55

REQUEST ("Clean_intersections", "", state)

Returns the state of the Clean Wall & Beam Intersections feature (1 when turned on, O when off) Expression returns 0 and contains dummy return
values (emtpy string or 0) if used in parameter script, causing additional warning.

REQUEST ("Zone_category", "", name, code)

For zones, returns the name and the code string of the current zone category.

REQUEST ("Zone relations", "",

categgryiname, code, name, number
[, category name2, code2, name2, number2])

Returns in the given variables the zone category name and code and the name and number of the zone where the library part containing this
request is located. For doors and windows, there can be a maximum of two zones. The return value of the request is the number of successfully
retrieved values (0 if the library part is not inside any zone).
REQUEST ("Zone_relations_of_ owner", "",

category name, code, name, number
[, category name2, code2, name2, number2])

Returns in the given variables the category name & code and the zone name & number of the zone where the owner of the object is located.
So, it is meaningful, if the library part has owner (door-window labels and door-window markers, etc.). In case of a door label, its owner is the
door. For doors and windows, there can be a maximum of two related zones. The return value of the request is the number of successfully
retrieved values (0 if the object has no owner, or its owner is not inside any zone). Causes warning if used in parameter script.

REQUEST ("Zone_colus_area", "", area)

Returns in the atea variable the total area of the columns placed in the current zone. Effective only for Zone Stamps. Available only for
compatibility reasons. It is recommended to use quantities set in Zone Stamp fix parameters. Expression returns 0 and contains dummy return values
(emitpy string or 0) if used in parameter script, cansing additional warning.

REQUEST ("Custom_ auto_label", "", name)

Returns in the name variable the name of the custom auto label of the library part or an empty string if it does not exist. Expression returns 0 and
contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.

GDL Reference Guide 394

Miscellaneous

REQUEST ("Rgb_of material", name, r, g, b)
REQUEST ("Rgb_of pen", penindex, r, g, b)
REQUEST ("Pen_of_RGB" , "r g b", penindex)

Like the REQ() function (but in just one call), returns in the specified variables the value of the 1, g, b components of the material and pen,
or the index of the pen corresponding to the given RGB values. A2 3 expressions return O containing dummy return values (emtpy string or 0) if used
in parameter script, causing additional warning.

REQUEST ("Height of style", name, height [, descent, leading])

Returns in the given variables the total height of the style measured in millimeters (height in meters is height / 1000 * GLOB_SCALE); the
descent (the distance in millimeters from the text base line to the descent line) and the leading (the distance in millimeters from the descent
line to the ascent line).

REQUEST ("Style_info", name, fontname [, size, anchor, face or slant])

Returns information in the given vatiables on the previously defined style (see style parameters at the DEFINE STYLE command). Can be useful in
macros to collect information on the style defined in a main script. Causes warning if used in parameter script.

REQUEST ("Name_of_material" , index, name)

Returns in the variable the material name identified by index. Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter
script, causing additional warning.

REQUEST ("Name_of_fill" , index, name)

Returns in the name variable the fill name identified by index. Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter
secript, causing additional warning.

REQUEST ("Name_of line_type", index, name)

Returns in the given variable the line name identified by index. Expression returns O and contains dummy return values (emtpy string or 0) if used in
parameter script, cansing additional warning.

REQUEST ("Name of style", index, name)

Returns in the given variable the name of the style identified by index. Expression returns O and contains dummy return values (emtpy string or 0) if
used in parameler script, cansing additional warning.

If index < 0, it refers to a material, fill, line type or style defined in the GDL script or the MASTER_GDL file. A call of a request with index
= 0 returns in the variable the name of the default material or line type. (Empty string for fill and style.)

The return value of the request is the number of successfully retrieved values (1 if no error occurred, O for error when the index is not valid).
REQUEST ("WINDOW DOOR SHOW DIM", "", show)

Before 9.0 teturns 1 in the show variable if Options/Display Options/Doots & Windows is set to "Show with Dimensions", 0 otherwise. Since
9.0 display options were split to separate Door and Window display options, so for compatibility reasons ARCHICAD checks if the request

GDL Reference Guide 395

Miscellaneous

is used in a Window (or marker of a Window) or a Door (or marker of a Door) and automatically returns the corresponding display option.
In other cases (symbol, lamp, label) the Window option is teturned. Can be used to hide/show custom dimensions accotding to the curtent
Display Options. Expression returns O and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.

Since 9.0 the "window_show_dim", and the "door_show_dim" separate requests are available.

REQUEST ("window_show_dim", "", show)

Returns 1 in the show variable if in the Model View Options/Window options the "with Matkers" is checked, 0 otherwise. Expression returns 0
and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.

REQUEST ("door_show_dim", "", show)

Returns 1 in the show variable if in the Model View Options/Door options the "with Markers" is checked, 0 otherwise. Expression returns 0 and
contains dummy return values (emtpy string or 0) if used in parameter script, cansing additional warning.

REQUEST ("name_of listed", "", name)

Returns in the name variable the name of the library part associated with the property type library part containing this request. For elements
(Walls, Slabs, etc.), the name is an empty string. Causes warning if used in parameter script.

REQUEST ("window_door_ zone_ relev", "", out direction)

Effective only for Doors and Windows. Use it as complement to the "zone_telations" request. Returns 1 in the out_direction variable if the
Doot/Window opening direction is in that of the first room identified by the "zone_relations" request, 2 if the opening direction is towards the
second room. It also returns 2 if there is only one room and the opening direction is to the outside. Causes warning if used in parameter script.
REQUEST ("window_door_ zone_ relev_of owner", "", out direction)

Effective only if the library part’s parent is a door or a window (matkers, labels). Use it as a complement to the "zone_relations_of_ownet"
request. Returns 1 in the out_direction variable if the parent’s opening direction is in that of the first zone identified by the zone relations type
requests, 2 if the opening direction is towards the second zone. It also returns 2 if there is only one zone and the opening direction is to the
outside. Causes warning if used in parameter script.

REQUEST ("matching properties", type, namel, name2, ...)

If type = 1, returns in the given variables individually associated property library part names, otherwise property library part names associated
by criteria. If used in an associative label, the function returns the properties of the element the label is associated with. Expression returns 0 and
contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.

REQUEST ("Working length unit", "", format string)

REQUEST ("Working angle_unit", "", format string)

With these requests, the user can get the working unit formats as set in the Options > Project Preferences > Working Units dialog box. They
return a format string that can be used as the first parameter in the STR () function. The requests both work when interpreting the user interface
script, but "Working angle unit" causes warning if used in parameter script.

GDL Reference Guide 396

Miscellaneous

REQUEST ("Model length unit", "", format string)

REQUEST ("Layout length unit", "", format string)

With these requests, the user can get the layout and the model unit formats as set in the Options > Project Preferences > Working Units dialog
box. They return a format string that can be used as the first parameter in the STR () function. Both expressions return O containing dummy return
values (emtpy string or 0) if used in parameter script, causing additional warning. Both work in User Interface Script only.

REQUEST ("Model text size unit", "", format string)

REQUEST ("Layout text size unit", "", format string)

With these requests, the user can get the layout and the model text size formats. They return a format string that can be used as the first
parameter in the STR () function. The requests cause warning if used in parameter script.

REQUEST ("Properties_Of Parent", "", parentProperties)

Returns the properties of the parent object. All properties are returned in one array with the following form: 1D, type, group, name. Can be
used only in labels. Expression returns 0 and contains dunmy return values (emtpy string or 0) if used in parameter script, causing additional warning.

Core property: [id, ", ", PropertyName]
AC property: [guid, "", "GroupName", PropertyName]
IFC property: [id, "IFC", "GroupName", PropertyName]

Compatibility: introduced in ARCHICAD 20.

Example 4:

DIM parentProperties]|]

n = REQUEST ("Properties Of Parent", "", parentProperties)

! parentProperties = [Idl, TypeNamel, GroupNamel, PropertyNamel,
Id2, TypeName?2, GroupName2, PropertyNameZ2,

Idn, TypeNamen, GroupNamen, PropertyNamen]

REQUEST ("Property Value Of Parent", "id", type, diml, dim2, propertyValues)
Returns value array of the selected property. Can be used only in labels. Expression returns O and contains dummy return valnes (emtpy string or 0) if
used in parameter script, cansing additional warning.

Compatibility: introduced in ARCHICAD 20.
id: the ID of the selected property (string).
type: the type of the selected property value.

GDL Reference Guide 397

Miscellaneous

1: boolean

2: integer

3: real number
4: string

diml, dim2: the dimensions of the propertyValues array.
diml = 0, dim2 = 0: simple, scalar value.
diml > 0, dim2 > 0: list of values.

Example 5:

DIM propertyValues]|]
n = REQUEST ("Property Value Of Parent", "ExampleId", type, diml, dim2, propertyValues)

REQUEST ("Property Name", "id", typeName, groupName, propertyName)

Returns the type, group and name of the selected property. Can be used only in labels. Expression returns O and contains dummy return values (enstpy
string or 0) if used in parameter script, cansing additional warning.

Compatibility: introduced in ARCHICAD 20.

id: the ID of the selected property (string).

typeName: the Type of the selected property (string).
"IFC": for IFC properties

other properties

groupName: the Group of the selected property (string).
empty string (

propertyName: the Name of the selected property (string).

REQUEST ("AUTOTEXT LIST", "", autoTextListArray)

Returns one AUTOTEXT array of the autotexts used in the project with the following triplets ["ID", "Category", "Name"|. Expression returns
0 and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning. Can be used only in UI script. The 1D is stored
in the parameter via the UI_CUSTOM_POPUP... commands.

Contains all autotexts from Project Info and Autotext Dialog (Text tool - Insert Autotext).

Compatibility: introduced in ARCHICAD 20.

"

) for Core properties.

GDL Reference Guide 398

Miscellaneous

Example 6:

DIM autoTextListArray][]

n = REQUEST ("AUTOTEXT_LIST", "", autoTextListArray)

! autoTextListArray = [ID1, CategoryNamel, TextNamel,
ID2, CategoryName2, TextName2,

IDn, CategoryNamen, TextNamen]

REQUEST{3} ("Sum with rounding", req name, addends array, result)

Returns the sum of the numbers in addends_array, with rounding according to the "Calculate Totals by" project preference. This preference
can be found in Project Preferences / Calculation Units and Rules.

Possible project preference settings:

* "Displayed values": the request will first round the addends according to req_name, and then sum them.
» "Exact values": the request will simply sum the addends.

Causes warning if used in parameter script.
Compatibility: introduced in ARCHICAD 20.
Return values:

* 0, if req_name is invalid.

* 1, if the call succeeded.

req_name: the name of the formatting request specifying how the addends have to be rounded if "Calculate Totals by" is set to "Displayed
values".

For example if req_name = "Area_dimension", and the Project Preferences / Dimensions / Area Calculations is set to "square centimetet”
with 3 decimals, rounding to 0.025, then the addends will be rounded to the multiples of 0.025 cm?, that is to 0.0000025 m?.

Valid request names:
Linear_dimension, Angular dimension, Radial_dimension, Level dimension, Elevation_dimension, Window_door_dimension,
Sill_height_dimension, Area_dimension, Calc_length_unit, Calc_area_unit, Calc_volume_unit, Calc_angle_unit.

addends_array: thearray of numbers to be added. Whether they have to be treated as m, m? m? or degrees is determined by req_name.

result: anumber, on return it will be set to the sum of the addends according to the "Calculate Totals by" preference. Note that result is

in the same unit as the addends. It is not converted to the target unit specified by req_name.
REQUEST ("ASSOCLP_PARVALUE", expr, name or index, type, flags, diml, dim2, p values)

GDL Reference Guide 399

Miscellaneous

REQUEST ("ASSOCLP_PARVALUE WITH DESCRIPTION", expr, name or index, type,

flags, diml, dim2, p values and descriptions)
Returns information in the given variables on the library part parameter with which the library part containing this request is associated. Can
be used in property objects, labels and marker objects.

The function return value is the number of successfully retrieved values, 0 if the specified parameter does not exist or an error occurred.
expr: the request’s object, associated library p art parameter name or index expression.

name or_index: returns the index or the name of the parameter, depending on the previous expression type (returns index if a parameter
name, name if the index is specified).

type: parameter type, possible values:
1: boolean

integer

real number

string

length

angle

line

O J o U W

material
9: fill
10: pen color
11: light switch
12: rgb color
13: light intensity
14: separator
15: title

flags:
flags = j1 + 2*jp + 64*3j7 + 128*jg, whetre eachjcanbe 0 or 1.
j1: child/indented in parameter list
j2: with bold text in parameter list
j7: disabled (locked in all contexts)
jg: hidden in the parameter list

diml, dim2: dim1l is the number of rows, dim2 the number of columns.

GDL Reference Guide 400

Miscellaneous

diml = 0, dim2 = 0: simple, scalar value
diml > 0, dim2 = 0: one dimensional array
diml > 0, dim2 > 0: two dimensional array
If dim2 > 0, then diml > 0.

p_values: for ASSOCLP_PARVALUE returns the parameter value or array of values. The array elements are returned successively, row
by row as a one dimensional array, independently of the dimensions of the variable specified to store it. If the variable is not a dynamic
array, there are as many elements stored as there is room for (for a simple variable only one, the first element). If values is a two dimensional
dynamic array, all elements are stored in the first row.

p_values_and descriptions: for ASSOCLP_PARVALUE_WITH_DESCRIPTION returns the parameter value followed by the
parameter description string (as specified at the VALUES command command) or an array of these pairs. For string type parameters the
description string is always empty. The array element - array element description string pairs are returned successively, row by row as a one
dimensional array, independently of the dimensions of the variable specified to store it. If the variable is not a dynamic array, there are as
many elements stored as there is room for (for a simple variable only one, the first element). If values is a two dimensional dynamic array,
all elements are stored in the first row.

REQUEST ("ASSOCLP NAME", "", name)

Returns in the given variable the name of the library part associated with the label or marker object. For elements (Walls, Slabs, etc.) the name

is an empty string, Expression returns O and contains dummy return values (emtpy string or 0) if used in parameter script, cansing additional warning.

REQUEST ("ASSOCEL PROPERTIES", parameter string, nr data, data)

Returns, in the given variables, own property data or the element properties which the library part containing this request is associated to (in

labels and associative marker objects). The function return value is the number of successfully retrieved values, 0 if no property data was found

or an error occurred. The function does not work in property objects during the listing process. Expression returns O and contains dummy return

values (emtpy string or 0) if used in parameter script, causing additional warning.

parameter string: acombination of keywords separated by commas representing the requested fields of the property data records.
Records will be ordered accordingly. Possible values:
"ISCOMP"
"DBSETNAME"
"KEYCODE"
"KEYNAME"
"CODE"
"NAME"
"FULLNAME"
"QUANTITY"

GDL Reference Guide 401

Miscellaneous

"TOTQUANTITY"
"UNITCODE"
"UNITNAME"
"UNITFORMATSTR"
"PROPOBJNAME"

nr_data: returns the number of the data items.

data: returns the property data, records containing and being ordered by the fields specified in the parameter string. Values are returned as
a one dimensional array which contains the requested record fields successively, independently of the dimensions of the variable specified to
store it. If the variable is not a dynamic array, there are as many elements stored as there is room for (in case of a simple variable only one,
the first element). If values is a two dimensional dynamic array, all elements ate stored in the first row.

Example 7:

DIM DATA []
n = REQUEST ("ASSOCEL PROPERTIES", "iscomp, code, name", nr, data)
IF nr = 0 THEN -
TEXT2 0, 0, "No properties"
ELSE
3 =20
FOR i = 1 TO nr
IF i MOD 3 = 0 THEN
TEXT2 0, -j, DATA [i] ! name
j=3 +1
ENDIF
NEXT i
ENDIF

REQUEST ("REFERENCE LEVEL DATA", "", namel, elevl, nameZ, elevZ,
name3, elev3, named, elevid)

Returns in the given variables the names and elevations of the reference levels as set in the Options/Project Preferences/Reference Levels
dialog. The function return value is the number of successfully retrieved values, 0 if an error occurred.

REQUEST ("ANCESTRY_ INFO", expr, name [, guid,
parent namel, parent guidl,

parent namen, parent guidn)
Ancestry information on a library part. Expression returns 0 and contains dummy return values (emitpy string or 0) if used in parameter script, cansing additional
warning.

GDL Reference Guide 402

Miscellaneous

If expr = 0, returns in the given variables the name and the globally unique identifier of the library part containing this request function.
Optionally the function returns the names and globally unique identifiers of the parents of the library part (parent_namei, parent_guidi). If the
parent templates are not loaded their names will be empty strings.

If expr = 1, returns information on the library part replaced by the template containing this function. In this case if the template is not actually
replacing, no values are returned.

The return value of the request is the number of successfully retrieved values.

Example 8:
DIM strings/[]
n = REQUEST ("ANCESTRY INFO", 1, name, guid, strings)
IF n > 2 THEN N
! data of replaced library part
TEXT2 0, -1, "replacing: " + name + ' ' + guid
! parents
1 = -2
FOR i =1 TO n - 2 STEP 2
TEXT2 0, 1, strings [i]
1 =1-1
NEXT i
ENDIF

REQUEST ("TEXTBLOCK_INFO", textblock name, width, height)

Returns in the given variables the sizes in x and y direction of a text block previously defined via the TEXTBLOCK command. The sizes are in
mm or in m in model space depending on the fixed_height parameter value of TEXTBLOCK (millimeters if 1, meters in model space if 0). If
width was 0, the request returns the calculated width and height, if width was specified in the text block definition, returns the calculated height
corresponding to that width. Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter script, cansing additional warning.
REQUEST{2} ("Material info", name or index, param name, value or values)

Returns information in the given variable(s) on a parameter (or extra parameter, see the section called “Additional Data”) of the specified
material. RGB information is returned in three separate variables, texture information is returned in the following variables: file_name, width,
height, mask, rotation_angle corresponding to the texture definition. All other parameter information is returned in single variables. Expression
returns O and contains dummy return values (emtpy string or 0) if used in parameter script, cansing additional warning. Possible material parameter names
corresponding to parameters of the material definition:

param_name:
"gs mat surface rgb": surface R, G, B [0.0..1.0]

GDL Reference Guide 403

Miscellaneous

"gs mat ambient": ambient coefficient [0.0..1.0]

"gs mat diffuse": diffuse coefficient [0.0..1.0]

"gs mat specular": specular coefficient [0.0..1.0]

"gs mat transparent": transparent coefficient [0.0..1.0]
"gs mat shining": shininess [0.0..100.0]

"gs mat transp att": transparency attenuation [0.0..4.0]
"gs mat specular rgb": specular color R, G, B [0.0..1.0]
"gs mat emission rgb": emission color R, G, B [0.0..1.0]
"gs mat emission_att": emission attenuation [0.0..65.5]
"gs mat fill ind": fill index

"gs mat fillcolor ind": fill colorindex

"gs mat texture": textureindex

Example 9:
REQUEST{2} ("Material info"

REQUEST{2} ("Material info"
file name, w, h, mask, alpha)

REQUEST{2} ("Material info", "My-Material", "my extra parameter",

REQUEST{2} ("Building Material info", name, param name, value or values)

_ , "Brick-Face", "gs mat ambient",
REQUEST{2} ("Material info", 1, "gs mat surface rgb", r, g, b)
, "Brick-Face", "gs mat texture",

Returns information in the given variable(s) on a parameter of the specified building material. Expression returns O and contains dunimy return values

(emitpy string or 0) if used in parameter script, causing additional warning. Possible building material parameter names corresponding to parameters of

the building material definition:

param_name:
"gs_bmat id": building material id
"gs _bmat surface": building material surface index
"gs bmat description": building material description

"gs bmat manufacturer": building material manufacturer
"gs bmat collisiondetection": building material participates in collision detection (0 or 1)
"gs bmat intersectionpriority": building material intersection priority

"gs bmat cutFill properties": buildingmaterial cut fill properties (cut fill index number, cut fill foreground pen index number,

cut fill background pen index number)

GDL Reference Guide

404

Miscellaneous

"gs _bmat physical properties": building material physical properties (thermal conductivity, density, heat capacity, embodied
energy, embodied carbon)

Example 10:

REQUEST{2} ("Building Material info", "Brick", "gs bmat id", id)

REQUEST{2} ("Building Material info", "Brick", "gs bmat surface", index)

REQUEST{2} ("Building Material info", "Brick", "gs bmat physical properties",
thermalConductivity, density, heatCapacity, embodiedEnergy, embodiedCarbon)

REQUEST ("FONTNAMES LIST", "", fontnames)

Returns in the given variables the fontnames available on the current computer (with character codes included). This list (or any part of this
list) can be used in a VALUES command to set up a fontname popup. The function return value is the number of successfully retrieved values,
0 if an error occurred.

Example 11:

dim fontnames/|]
REQUEST ("FONTNAMESiLIST", """, fontnames)
VALUES "f" fontnames, CUSTOM

This form of the VALUES command assembles a fontnames pop-up for the simple string-typed parameter "f". The "fontnames" vatiable
contains the possible fontnames (with character codes included) which can be set manually or using the REQUEST ("FONTNAMES_LIST",...)
command. The CUSTOM keyword is necessary for the correct handling of missing fonts on other platforms/computers: if it is specified, a
fontname set on another platform/computer missing in the current environment will be preserved in the parameter settings as a custom value
(otherwise, due to the implementation of the VALUES command, a missing string popup value in the parameter settings will be replaced with
the first current string value). It is recommended to include this function in the ARCHICAD_Library_Master file.

REQUEST ("HomeDB info", "", homeDBIntId, homeDBUserId, homeDBName, homeContext)

Returns in the given variables the internal ID (integer), the user ID and name (strings) of the home database (where the library part containing
this request was placed).

* if placed on the floor plan: the story internal ID, index as a string and name, homeContext = 1,

* if placed on a section: the section internal ID, reference ID and name, homeContext = 2,

* if placed on a detail: the detail internal ID, reference ID and name, homeContext = 3,

* if placed on a master layout: the layout internal ID, empty string and name, homeContext = 4,

* if placed on a layout: the layout internal ID, number and name, homeContext = 5.

For labels the returned data refers to the labeled element. The collected data can be used to uniquely identify elements in different ARCHICAD
databases of a plan file. Causes warning if used in parameter script.

GDL Reference Guide 405

Miscellaneous

REQUEST ("floor plan option", "", storyViewpointType)

Returns the story viewpoint type which is set in the Model View Options. 0 stands for "Floor Plan", 1 stands for "Ceiling Plan". Expression
returns O and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.

REQUEST ("class_of fill", index, class)

Returns class of the fill identified by index in the class variable. Causes warning if used in parameter script.

class: Possible values:

1: wvector fill

2: symbol fill

3: translucent fill

4 : linear gradient fill
5: radial gradient fill

6: image fill
REQUEST ("view_rotangle", "", angleViewRotation)
Returns the rotation angle of the current view. Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter script, cansing
additional warning.
REQUEST ("program info", "", name[, version[, keySerialNumber[, isCommercial]]])
Returns information on the currently running program. Expression returns O and contains dummy return values (emipy string or 0) if used in parameter
script, causing additional warning.
name: name of the program
version: version number of the program
keySerialNumber: serial number of the keyplug
isCommercial: returns true if there is running a full (commercial) version of the program
REQUEST ("Configuration number", "", stConfigurationNumber)
Returns the configuration number (as string expression) assigned to the current ARCHICAD license in case of soft license or hardware key.
Returns empty string in case of Edu, Trial or Demo licenses. Each configuration number is unique and does not change.
Expression returns O and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.
Compatibility: introduced in ARCHICAD 20.
REQUEST (extension name, parameter string, variablel, wvariable2, ...)
If the question isn’t one of those listed above, the REQUEST!() function will attempt to use it as an extension-specific name. If this extension
is loaded, it will be used to get as many variable names as are specified. The parameter string is interpreted by the extension.
REQUEST ("COMPONENT PROJECTED_AREA", idxSkin, projectedArea)

GDL Reference Guide 406

Miscellaneous

Returns the projected area of the indexed skin. Available in property script only (other scripts return 0). Expression returns O and contains dummy
return values (emtpy string or 0) if used in parameter script, causing additional warning.

idxSkin: Possible values:
0: for basic elements

1- : index of the skin in composites
1- : index of the component in profiles
Example 12:

n = request ("COMPONENT_PROJECTED_AREA", 0, a)
COMPONENT "Projected Area", a, "m2"

Used in property script, first request the area of the skin, then create a component using the returned value.

REQUEST ("COMPONENT VOLUME", idxSkin, skinVolume)
Returns the volume of the indexed skin/component. Available in property sctipt only (other sctipts return 0). Expression returns 0 and contains
dummy return values (emtpy string or 0) if used in parameter script, cansing additional warning.
idxSkin: Possible values:
0: for basic elements
1- : index of the skin in composites
1- : index of the component in profiles

Example 13:

n = request ("COMPONENT VOLUME", 0, wv)
COMPONENT "Volume", v, "m3"

Used in property script, first request the volume of the skin, then create a component using the returned value.

Deprecated Requests
REQUEST ("Constr_ Fills display", "", optionVal)
Expression returns O and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.

Compatibility up till ARCHICAD 19: returns in the given variable the value of the Cut Fills Display option as set in the Document/ Set Model View/ Model
View Options. (previous Construction Fills).

GDL Reference Guide 407

Miscellaneous

Compatibility starting from ARCHICAD 20: the returned valne is always 6 by defanlt (Cut fill patterns: as in Settings).

optionVal: cut fill display code.
1: Show cut fill contours only (previous Empty)
2: Show cut fill contours only with separator lines (previous No Fills)
4: Cut fill patterns: Solid (previous Solid)
6: Cut fill patterns: as in Settings (previous Vectorial Hatching)
REQUEST ("internal ID", "", id)
Abways returns 1. Use GLOB_INTGUID global variable instead.

APPLICATION QUERY OPTIONS

n = APPLICATION QUERY (extension name, parameter string, variablel, variable2, ...)

Below is a list of request functions ARCHICAD can provide with the help of the APPLICATION_QUERY command. These request options
are given in the extension_name and the parameter_string parameter of the command. Note, that the query options and return values of
an APPLICATION_QUERY may vary according to the execution context.

The use of the following application query types in parameter script is not supported. These queries cause GDL warnings starting from
ARCHICAD 19, and will return either O or empty string starting from the next versions. The restriction applies to:

¢ "document_feature"

Document feature

This command can return featutes of the active document/view. Curtently there is only one feature it can return - the view ditection of the
document. These type of queries are restricted from the parameter script and cause GDL warnings.

View direction

n = APPLICATION QUERY ("document feature", "view direction", type)

This command returns the viewing direction of the current document type in which the object is being visualized. This command has no
additional parameters.

type: Returned type values:
"vertical only": for floor plan

"horizontal only": for section and elevation generated from 3D (not when the object is placed into a S/E)
"free": for 3D and 3D document
"none"

GDL Reference Guide 408

Miscellaneous

"unset"

MEP System

This command returns MEP system types and information about MEP systems. It has more functions which can be addressed via the

parameter_string parameter:

Get MEP Systems
DIM d[2][]

n = APPLICATION QUERY ("MEPSYSTEM", "GetMEPSystems (domain)",

d)

domain: MEP classification index (DuctWork — 1, PipeWork — 2) (GDL defines the MEP classifications based on connector class)

d: Array of values:
[2*k-1]: MEP system index
[2*k] : MEP system name

n: Number of MEP systems multiplied by 2.

Get Domain
n = APPLICATION_QUERY ("MEPSYSTEM", "GetDomain (idx)", d)
idx: MEP system index
d: domains (integer)
: DuctWork
PipeWork
Duct- and PipeWork
Cabling
DuctWork and Cabling
PipeWork and Cabling
DuctWork, PipeWork and Cabling

n: 1 if successful, 0 otherwise

~N o Uk w N

Get Contour Pen
n = APPLICATION QUERY ("MEPSYSTEM", "GetContourPen (idx)"
idx: MEDP system index

4

pen)

GDL Reference Guide

409

Miscellaneous

pen: contour pen index (integer)

n: 1 if successful, 0 otherwise

Get Fill Pen

n = APPLICATION_QUERY ("MEPSYSTEM", "GetFillPen (idx)", pen)
idx: MEP system index

pen: fill pen index (integer)

n: 1if successful, 0 otherwise

Get Background Pen

n = APPLICATION QUERY ("MEPSYSTEM", "GetBgPen (idx)", pen)
idx: MEDP system index

pen: background pen index (integer)

n: 1 if successful, O otherwise

Get Fill Type
n = APPLICATION QUERY ("MEPSYSTEM", "GetFillType (idx)", filltype)

idx: MEP system index
filltype: fill typeindex (integer)

n: 1if successful, 0 otherwise

Get Center Line Type

n = APPLICATION QUERY ("MEPSYSTEM", "GetCenterLineType (idx)", line)
idx: MEDP system index

line: center line type index (integer)

n: 1 if successful, 0 otherwise

Get Center Line Pen
n = APPLICATION QUERY ("MEPSYSTEM", "GetCenterLinePen (idx)", pen)

GDL Reference Guide 410

Miscellaneous

idx: MEP system index
pen: center line pen index (integer)

n: 1if successful, 0 otherwise

Get System Material

n = APPLICATION QUERY ("MEPSYSTEM", "GetSystemMaterial (idx)", material)
idx: MEDP system index

material: system material index (integer)

n: 1 if successful, 0 otherwise

Get Insulation Material

n = APPLICATION_ QUERY ("MEPSYSTEM", "GetInsulationMaterial (idx)", material)
idx: MEDP system index

material: insulation material index (integer)

n: 1 if successful, 0 otherwise

MEP Modeler

This command returns whether MEP modeler is active. It has one function which can be addressed via the parameter_string parameter:

Is Available
n = APPLICATION QUERY ("MEPMODELER", "IsAvailable()", isavailable)
isavailable: MEP Modeler is present (integer)

n: 1 if successful, 0 otherwise

MEP Connection Type

This command returns the connection types and the styles of connection types. It has two functions which can be addressed via the
parameter_string parameter:

Get Connection Types
DIM d[2][]

GDL Reference Guide 411

Miscellaneous

n = APPLICATION_ QUERY ("MEPCONNECTIONTYPE", "GetConnectionTypes (connectorClass)", d)
connectorClass: connector class (Duct — 1, Pipe — 2, Cable carrier — 3)

d: Array of values:
[2*k-1]: connection type GUID
[2*k] : connection type name

n: Number of connection types multiplied by 2.

Get Connection Type Style

DIM d[]
n = APPLICATION_ QUERY ("MEPCONNECTIONTYPE", "GetConnectionTypeStyle (connectorClass)", d)

connectorClass: connector class (Duct — 1, Pipe — 2, Cable carrier — 3)

d: Array of values:
[]1: connection type styles

n: Number of connection types.

MEDP Flexible Segment

This command returns the geometry of flexible segments. It has four functions which can be addressed via the parameter_string parameter:

Start Sectioning
n = APPLICATION QUERY ("MEPFLEXIBLESEGMENT", "StartSectioning()", r)
Indicates that sectioning has begun.

r: not used

n: 1 if successful, 0 otherwise

Add Control Point
n = APPLICATION_ QUERY ("MEPFLEXIBLESEGMENT", "AddCont rolPoint(x; y; z)", r)
Provides a control point to the add-on.
AddControlPoint:
x: X coordinate of the control point
y: Y coordinate of the control point
z: Z coordinate of the control point

GDL Reference Guide 412

Miscellaneous

r: not used

n: 1 if successful, 0 otherwise

Add Direction and Width Vector
n = APPLICATION QUERY ("MEPFLEXIBLESEGMENT",

"AddDirectionAndWidthVector (i; dx; dy; dz; wx; wy;

Provides the direction and side vectors of the ends of spline to add-on. It is called twice.

AddDirectionAndWidthVector:

i: id of port (1: 0. port, 2: 1. port etc.)

dx: X component of direction vector of the port
dy: Y component of direction vector of the port
dz: Z component of direction vector of the port
wx: X component of side vector of the port

wy: Y component of side vector of the port

wz: Z component of side vector of the port

r: notused

n: 1 if successful, 0 otherwise

End Sectioning

DIM d[]

n = APPLICATION QUERY ("MEPFLEXIBLESEGMENT",
Getting of the result of sectioning;

res: resolution of sectioning

d: Array of values:
[]+ X position of k segment

[]+ Y position of k segment

[]+ Z position of k segment

[9*%k-5]: X component of tangent vector of k segment

[]+ Y component of tangent vector of k segment

[]+ Z component of tangent vector of k segment

[]+ X component of normal vector k segment

"EndSectioning(res)",

WZ) H,

d)

r)

GDL Reference Guide

413

Miscellaneous

[9%k-1]: Y component of normal vector k segment
[9%k] : Z component of normal vector k segment

n: Number of segments

MEP Bend

This command returns the geometry of flexible segment. It has four functions which can be addressed via the parameter_string parameter:

Start Sectioning
n = APPLICATION QUERY ("MEPBEND", "GetBendTypeNames ()", d)

d: Bend Type Names (examples of INT version)
"Radius"
"Square Throat"
"Mitered"
"45° Throat with 45° Heel"
"45° Throat with 90° Heel"
"45° Throat with Radius Heel"
"Radius Throat with 90° Heel"
"Pleated"
"Stamped"
"Segmented"
"Segmented Standing Seam"

n: 1 if successful, 0 otherwise

Parameter Script

This command can return various conditions of the parameter script. Currently there is only one feature it can return - the distinction of the
first run.

First Occasion in Progress

n = APPLICATION_ QUERY ("parameter_ script", "firstoccasion in progress", isFirstRun)

This command returns whether the current run is the first run or a consequence of a previous execution of the parameter script which changed
some parameters. This command has no additional parameters.

GDL Reference Guide 414

Miscellaneous

The distinction may be important when a part of the parameter script executes a triggered event - e.g. it handles the pushing of a function button.

isFirstRun: The returned value shows whether the current run is the first run

Tags and Categories
These commands return the folder names, parameter names and parameter values of "Tags and Categories" tabpage. The order of parameters
is the same as on the tabpage. There are two possible extension_names in these commands:

* "OwnCustomParameters' returns parameters of the object
* "ParentCustomParameters' returns parameters of the object's parent

Get Parameter Folder Names

DIM folderNamesArray([] ! [idString 1], [shortNameString 1], [longNameString 117,
|

! [1dString n], [shortNameString n], [longNameString n]
n = APPLICATION_ QUERY (extension name, "GetParameterFolderNames ()", folderNamesArray)

Returns the folder names of Tags and Categories parameters.
folderNamesArray: String array which contains the foldernames of Tags and Categories

n+1l: Number of folders including the root folder

Get Parameter Names

DIM parNamesArray[] ! [idString 1], [shortNameString 1], [longNameString 1],
!

! [1dString n], [shortNameString n], [longNameString n]
n = APPLICATION QUERY (extension name,
"GetParameterNames (folderNamesArray[i] [1])", parNamesArray)

Returns the names of Tags and Categories parameters.
The first column of the array returned at the section called “Get Parameter Folder Nanzes”.
parNamesArray: String array which contains the names of Tags and Categories parameters

n: Number of parameters

Get Parameters
n = APPLICATION_ QUERY (extension name, "GetParameter (parNamesArray[i][2])", parValue)

GDL Reference Guide 415

Miscellaneous

Returns the values of Tags and Categories parameters.
The second colummn of the array returned at the section called “Get Parameter Names”.
parValue: String which contains the value of Tags and Categories parameters

n: 1 if successful, 0 otherwise

Library manager

This command can return various features of the library manager.

Ies files
n = APPLICATION QUERY ("LIBRARY MANAGER", "IES FILES", ies files list)

This command returns the list of file names with .ies extensions loaded with the active libraries.

User image files

n = APPLICATION_ QUERY ("LIBRARY MANAGER", "USER IMAGE FILES", image files list)

This command returns the list of user-provided image file names loaded with the active libraries (image files which are not in the dedicated
folders with names containing [TImg]*, [BImg]*, [UImg]*, or [HImg]*)

GDL STYLE GUIDE

Introduction

This document contains the GDL coding standard of GRAPHISOFT, which mainly sets the formal requirements for writing source code.
It also describes a few rules and recommendations for the content. You have to obey these rules in order to produce manageable scripts; by
default every declarative or imperative sentence is a rule, except where 'recommendation' (or avoidable, optional, etc.) is explicitly stated.

This document was created to establish a common format of GDL scripting. The GDL language is insensitive to the character case and most
of the whitespace characters. As a result, lots of coding practices and standards exist. This gets intolerable, when such practices meet in the
same project or organization. The following sections describe the GRAPHISOFT company standard, which remains purely a recommendation
for non-GRAPHISOFT related developers. The supposed format will not be included in the GDL language's constraints evet.

GDL Reference Guide 416

Miscellaneous

Naming Conventions

General rules

Because of the subtype hierarchy, the child library parts automatically inherit all parameters of the parent. (Read more about subtypes and
parameter in the ARCHICAD User Guide). Parameters are identified by their name, so inherited and original parameters can have the same
name. It is the responsibility of the library author to avoid conflicts by using descriptive parameter names prefixed with abbreviated library part
names. For handler parameters and user-defined parameters, GRAPHISOFT has introduced a parameter naming convention in its libraries.

Note

Handlers add extra functionality to library parts (e.g. doors and windows cut holes in walls). Parameter names with the prefix ac_
are reserved for special parameters associated with ARCHICAD handlers (e.g. ac_corner_window). Check the standard ARCHICAD
Library subtype templates for the complete list.

Standard GRAPHISOFT parameter names are marked with the gs_ prefix (e.g gs_frame_pen). Please check the ARCHICAD library parts for
reference. Use these parameters in your GDL scripts to ensure full compatibility with GRAPHISOFT libraries.

FM_ is reserved for ArchiFM (e.g. FM_Type).

Variable names

Variable and parameter names should be related with the function of the parameter.

mixedCase: starts with a lowercase letter; every new word should start with an uppercase letter. E.g: size, bRotAnglel80,
upperLeftCorner

Don't use one or two letter variable names - no one will know what you meant.

You should use a prefix in generally used variable names to denote general categories. This can spare time when someone needs to find out the
type of a variable or parameter. Don't forget to replace the prefix if you change the meaning of a variable.

GDL Reference Guide 417

Miscellaneous

Table 11. Variable name prefixes

Prefix Meaning Example
i General integer value / integer index iRiser
Integer value - amount of something nRiser
Boolean value bHandrail
st String type value stPanelTypes
X X coordinate of a point xRailPos
y Y coordinate of a point yRailPos
pen Pen color penContour
It Linetype ltContour
fill Fill type fillMainBody
mat Material type matCover

Using underscores (_) is recommended for distinguishing variables and parameters in the same script: use single underscore (_) prefix for a
variable in a script, and double (__) for a variable declared and used only inside a subroutine section. Do not use underscores in the beginning
of parameter names, or to separate words in a name. Historical names coming from subtypes are exceptions.

Example

_1DoorTypes = iDoorTypes

! " iDoorTypes" variable gets the value of "iDoorTypes" parameter
gosub "exampleScript"

end

"exampleScript":

___iDoorTypes = iDoorTypes * 3

! " iDoorTypes" subroutine variable gets the value of 3 times " iDoorTypes" variable
return
Capitalization

* Commands should be written consistently lowercase ot uppetcase according to your taste. GRAPHISOFT recommends lowercase.
* GDL global variables should always be written uppercase for easier script reading,

GDL Reference Guide 418

Miscellaneous

3

The following keywords should be lowercase: call, goto, gosub, parameters.

Expressions

3

Space should be used in front of and behind the following binary operators:

o arithmetical: ¥, /, % (mod), +, -, * (*¥)

° logical: & (and), | (ot), @ (excluding or), =, <> (#), <, <=, >, >=

° assignment: =

E.g.:

a=(b+c % d *e

No spaces are allowed in front of and behind the following unary operators:

o subscripting: array [25] Note: avoid space inside brackets (array [51) to make "find" function easier

° logical not: not (x)

° unary minus, unary plus: -x, +x

Function calls should have a space in front of the opening parenthesis of the parameter list, and behind every comma separating the
parameters:

abs (signedLength)

minimum = min (a, 25 * b, c)

When testing equality with constants (e.g. 1 = 5) the constant should be the second operand.

When assigning values to Boolean variables the logical expression should be parenthesized:

bBoolValue = (i > j)

Do not use the Boolean result of logical negation of integer values or variables. E.g. instead of 1f not (1IntVal) then pleasecuse if
iIntVal = 0 then. (Of course, Boolean variables and expressions can be negated, e.g. 1f not (bBoolVal) then).
Do not compare Boolean vatiables and expressions to true or false; use the value of Boolean or its negated value:

bBoolval = 1

if bBoolVal then ! instead of: if bBoolvVal = 1
endif
if not (bBoolVal) then ! instead of: if bBoolvVal = 0
endif

Complex expressions (e.g. where and and or are both present) should be parenthesized to clarify precedence.

Put parentheses around rarely used operator combinations.

Logical expressions consisting of many parts should be placed on multiple lines, and you should also align the sub-expressions or the logical
operators:

GDL Reference Guide 419

Miscellaneous

bResult = (bValuel
(
(
(bValue?2

Control flow statements

if - else - endif

not (bValuel)
not (bValuel?2)

2 2y &2

bvalue3
not (bValue3)
bvalue3
not (bValue3)

Avoid using the one line form of conditional expressions.

2 22 &2

not (bvValueWithLongerName)) |
bValueWithLongerName) |
not (bvalueWithLongerName)) |
bvValueWithLongerName)

—

To improve code readability, it is essential to express the hierarchy of nested statements. The following example shows the recommended

tabulation of code blocks.

if conditionl then
statementl

statementn
else
statementn+1

statementn+m
endif

if condition2 then
if condition3 then

else

endif
if condition4 then

endif
else

endif

GDL Reference Guide

420

Miscellaneous

for - next, do - while, while - endwhile, repeat - until

To improve code readability, it is essential to express the hierarchy of nested statements. The following example shows the recommended
tabulation of code blocks.

for i = initialValue to endValue
statementl

statementn
next i

do

for 1 = initialValue to endValue
statementl

statementn
next 1
bCondition =

while bCondition

Subroutines

Pieces of code that are needed more than once should be turned into subroutines. This makes later corrections less risky, and the code more
structured. The label of the subroutine should correspond with its function. Do not use numbers as names, it makes the code unreadable.
Variables used and declared only inside a subroutine should start with double underscore.

Style (italic texts should be replaced implicitly):

GDL Reference Guide 421

Miscellaneous

! Short description of the functionality

Input Parameters:

parl: short description (type)

parl: short description (type)
Output:

parl: short description

Remark:
Remarks for the caller
Description of key points of the implementation

subroutine title:
! body
return

You should write the body of the subroutine indented by one tabulator field to the right.

You should leave two empty lines behind the closing 'return' of the subroutine.
You should write one statement per line.

Subroutines shouldn't be longer than 1-2 scteens (about 80 lines) if possible.

Check all incoming parametets for validity and/or declare the restriction in comment

The call and parameters keywords are lowercase.

Writing comments
The language of the comments should be English; avoid bad words.

You should use the following style for comments:

Script header

It is only a recommendation

GDL Reference Guide

422

Miscellaneous

<contact person initials>

One sentence description of the purpose of the script

Input Parameters:

parl: description of the parameter (integer)
par2: description of the parameter (1 / -1)
par3: description of the parameter (0 / 1)

Output: [if a macro returns values]
[1]: description of the value (type)
[2]: description of the value (type)
[... NSP]: original stack elements
Remark:
Longer description.
Note for the caller

Any code can come only after this.

Section divide

Section name

The length of the full comment line is 80 characters.

For the subroutines you should always explain the meaning of non-trivial parameters and the return value. E.g. for indices always indicate the
range (starts from O or 1, any special values, etc.).

Example in the section called “Subroutines”

You should always indicate with the TODO keyword if you leave something unfinished, it's easy to seatch for later:

n

= 5 ! TODO: set initials; it will be computed from the length

GDL Reference Guide

423

Miscellaneous

You can also put optional section descriptions in between the lines of the source code, beginning at the current tab depth. You can also add
short explanations to the end of the source line by adding a tab at the end; or, if there are more of those, you can align them with tabs.

You should always add comments:

¢ For unusual solutions
* If it would help others understand the code more quickly.
* If something is forbidden or not recommended for others.

Optional (others will be thankful) if it helps in any way.
Do not let the comments break the rhythm of the code, or the merits of the code.

When commenting a coherent code block, you may use the following format:

! == code block name ===]
statementl

statementn
! === code block name ===

This facilitates the isolation of the block by the look plus some editors support the search for the matching bracket by a shortcut (e.g: ctrl
+] in Microsoft Visual Studio)

Comment the end of 'if' statements if thete are many code lines between 1 f and endif as follows:

if conditionl then
ié'conditionZ then
i.ﬁany statements
endié.. ! if condition2

endif ' if conditionl

Some script types (Forward and Backward Migration Scripts especially) have a recommended form of separators and structures. For examples,
see the ARCHICAD library or the section called “Basic Technical Standards”.

GDL Reference Guide 424

Miscellaneous

Script structure

Set your editor to use 4 character wide tabs. Spaces should never be used to tabulate lines. Instead, use spaces to adjust expressions to each
other inline.

The maximum length of the lines is 120 characters. Statements shouldn't even get close to this number. In case they do, you get a warning.
All file name references are case sensitive in scripts, the extensions accordingly.

Values used multiple times should be calculated directly before the block of usage if it can be well localized or at the beginning of the script
otherwise. There is no compromise. Calculate complex values only once to spare calculation time by storing them in variables (but do not waste
variables unnecessary) or in the transformation stack (add, rot, etc.).

The object scripts are linear which makes them clearer. Subroutines should only break it when a calculation or model generation segment is
needed more than once, or for script readability. Avoiding coding the same thing twice is an important principle in all programming languages.
Redundancy makes later changes a lot more difficult.

Try not to use huge choice branches, instead prepare the data for a calculation or generation command in smaller choice-blocks, where you
can avoid redundancy easier.

GDL Reference Guide 425

Miscellaneous

Bad Solution

if bOnHomeStory then
line type ltContour
fill gs_fill type
poly2 b 5, 3, gs fill pen, gs back pen,

left, 0, 1,
left, -depth, 1,
right, -depth, 1,
right, O, 0,
left, 0, -1

endif

if (bOnUpperStory or bOnAboveUpper) and bDrawContBB
line type ltBelow
fill fillTypeBelow
poly2 b 5, 3, fillPenBelow, fillBackBelow,

left, 0, 1,
left, -depth, 1,
right, -depth, 1,
right, 0, 0,
left, 0, -1

endif

The definition of geometry is duplicated! It could be even worse if the distance between the identical commands were bigger.

then

GDL Reference Guide

426

Miscellaneous

Good Solution

if bOnHomeStory then
bPolygon =1
line type ltContour
fill gs fill type
fillPen = gs fill pen
fil11BGPen = gs back pen
endif N N
if (bOnUpperStory or bOnAboveUpper) and bDrawContBB then
bPolygon = 1
line type ltBelow
fill fillTypeBelow
fillPen = fillPenBelow
fillBGPen = fillBackBelow
endif
if bPolygon then
poly2 b 5, 3, fillPen, £fillBGPen,

left, 0, 1,
left, -depth, 1,
right, -depth, 1,
right, O, 0,
left, 0, -1

endif

Prepare your scripts for localization.

Use "asdf" for non-localized strings (e.g. macro calls) and ~asdf " for localized strings (e.g. string constants, parameter values).
BAsiC TECHNICAL STANDARDS

Introduction

The release of new ARCHICAD® national versions, the growing GRAPHISOFT product line and the BIMcomponents® portal have
dramatically increased the demand for GDL objects and object libraries. As a result, many independent or third party GDL programmers have
started developing libraries or objects for GRAPHISOFT.

GDL Reference Guide 427

Miscellaneous

Basic guidelines are necessary to keep these objects compatible and to achieve the standard of quality people expect from GRAPHISOFT
products. The purpose of this document is to provide guidance to GDL developers in creating objects, with useful tips and tricks, examples,
descriptions of previously undocumented and new ARCHICAD features.

Library part format

File extension

Most GDL Library Objects are saved with the *.gsm extension and they are distinguished by their subtype in ARCHICAD. There is a special
extension, *.gdl (GDL Sctipt Files) for the MASTER_GDL/MASTEREND_GDL files. ARCHICAD handles any GDL Sctipt File starting
with the string "MASTER_GDL..." or "MASTEREND_GDL..." in their file name in a special way. These files can be used to load attribute
definitions, define line types, and materials etc. (more information in The GDL Script Analysis on page 10).

Identification
The identifier
Library Part ID
{ZB0AEEEL-BESS-4F34-ACAA-DOTRDZ159203 - {7728A37TF-ABDO-4306-A07D-B4866CR23905

Main ID Revision ID

The ID consists of two parts, each 36 hexadecimal characters long, The first 36 characters represent the Main ID and the last 36 characters

represent the Revision ID.

* The Main ID is created when the library part is saved for the first time. It is also modified if the library part is resaved using the "Save
as" command.

* The Revision ID is also created when the library part is saved for the first time but it is modified if the library patt is resaved using the "Save"
command. Using the LP_XMIConverter tool a compilation will change the Revision ID and leave the Main ID untouched, of course.

This means that Main ID identifies a library part in its function and the Revision ID helps in distinguishing the revisions of the object. Let's

see this in practice.

Library Part Identification

When placing an object in ARCHICAD, the program stores the reference by the ID and considers the name only for objects without an ID
(library parts saved before ARCHICAD 8 and .gdl files). In case of Library Parts coming from versions earlier than ARCHICAD 8, there was
no such thing as a GUID. So when such a Library Part is encountered in the file, ARCHICAD will fill out its ID with zeros.

GDL Reference Guide 428

Miscellaneous

When loading a library, ARCHICAD uses the following hierarchical criteria for matching loaded library parts to objects already placed in the
project:
* In case the stored ID is valid:
ARCHICAD tries to get an exact match of both parts of the ID
* Failing that, ARCHICAD tries to match the first part of the ID, which is the Main ID.
* In case it doesn't find one matching, it starts to check other elements' Migration Table values to find a substitute.
* Finally, when loading files saved before ARCHICAD 12, ARCHICAD tries to match by library part name.
* In case the stored ID is zero, the identification procedure tries to match by name only.

The same process is executed when looking for macros in a placed element as every library part contains a lookup table for its called macros'
GUIDs. Naturally, when saving an object containing macro calls, this table is collected using a name-based search in the currently loaded library.

How to know what the exact GUID of a Library Obiject is

For this you have to get to know the Subtype Hierarchy dialog window. In this dialog you can see the subtype hierarchy of the currently loaded
library in a tree view. The main attributes - name, version, ID, file location, flags indicating if the object is template or placeable - of the selected
library part are displayed in the bottom of the window.

This dialog appears in 3 contexts:

* Open Object by Subtype... (in File menu)

* Select Subtype... (in the Library Part Editor window)

* Place All Objects (in the Special menu)

Naturally, you can read the ID in the XML format of the library part (location: xpointer (/Symbol/@UNID)). To get this, use the
LP_XMILConverter tool.

Compatibility issues

The most important principle is that the Main ID represents a constant functionality to the users of the library. This means that if you publish
a new library part using a Main ID that is already in use by an old library part, when loading an old project with the new library, the old placed
elements will be replaced by the new object. This contradicts the users' expectations, such as there will be no change in the object's parameters
and their functions. If you want to change the name or the function of old parameters, generate a new Main ID and use migration scripts to
avoid ambiguity and unexpected data loss. Make sure that this new Main ID is unique - not identical with any other ID in the library.

Note, that renaming an object won't make it incompatible with its past self for ARCHICAD as long as their MainIDs remain identical. Similarly,
giving the name of an existing library part to a new one (with a new ID) will not make them compatible.

This issue effects the localization of libraries, too. If you have string type controlling parameters, the relevant values will differ between national
versions. For example: if you are unaware of the problem, loading a German plan file with the Danish sibling library will change the generated

GDL Reference Guide 429

Miscellaneous

elements since some control parameters have meaningless values. There are two solutions. The easy way is to declare that the German and
Danish libraries have nothing to do with each other and to change the Main IDs in localization consequently. The second - and more user
friendly - solution is to create an integer type control parameter acting as string (see VALUES). These integer parameters are determinant, the
visible string descriptions are just an input method for them (therefore localizations can be different, but the true meaning will stay the same).
When writing a script, the integer parameter values should be used.

The following example code features a detail level integer parameter acting as a string type:

gs_3d_representatrion

3D Representation

B =316 |u[iDetieveisD | it |30 Detail Level JCetailed v Detailed
H =) gs_resol 238 Resclution 24 Simple
s = gs_shadow Shadow On Off

I =

! Master script:

dim stDetlevel3DDesc [3]
stDetlevel3DDesc[l]="Detailed’
stDetlevel3DDesc[2]="Simple"
stDetlevel3DDesc[3]="0ff"

! iDetlevel3D constants
DETLEVEL3D DETAILED = 1
DETLEVELSD:S IMPLE = 2
DETLEVEL3D_OFF = 3

! Parameter script:

values{2} "iDetlevel3D" DETLEVEL3D DETAILED, stDetlevel3DDesc[1l],
DETLEVEL3D SIMPLE, stDetlevel3DDesc[2],
DETLEVEL3D OFF, stDetlevel3DDesc[3]

Migrating Elements
It is possible to maintain a link between the old and the new, updated version (with new Main ID) of a library part by using migration scripts
(the section called “Forward Migration script”, the section called “Backward Migration script”) and the section called “Migration table”.

In these scripts you can define which library part substitutes which (by connecting the old and new Main ID-s), and how to update the new
object's parameter values based on the old one (or vice versa). You can set rules for the migration to happen only under certain parametric
conditions. If the subject of the migration meets these, the upgrade or downgrade is possible, otherwise it will not be an option.

GDL Reference Guide 430

Miscellaneous

Generally, it is possible for the subject of the migration to have one or more successors (or ancestors in backward migration) depending on
parameter settings. The case is a little different when migrating Zone Stamps, though. One type of Zone Stamp can be linked to many Zone
Categories. But each category can use only one kind of Zone Stamp. When migrating a Zone Stamp, the Category stays the same. If the route of
migration diverges ("Zone Old" is upgraded to "Zone New 1", or to "Zone New 2", depending on different parameter settings), it is possible
to get a Category with two different Stamps linked. While this is a valid result regarding the migration process, it is an inconsistent situation
for ARCHICAD. Make sure you only migrate Zone Stamps in a direct way, to avoid this.

General scripting issues

Numeric types - Precision

Before ARCHICAD 9 all numeric values were stored internally as floating point values which resulted in imprecise vaules. This meant that
integer values were - a little - imprecisely stored. From ARCHICAD 9 integers - and hence GDL parameter types that are best described with
integers - are correctly stored internally as integers.

Parameter types internally stored as an Integer:
Integer,
Boolean,
Material,
Line type,
Fillpattern,
Pencolor,
Intensity (Light)

Parameter types internally stored as a Floating-point number:

Length,

Angle,

Real,

RGB Color component (Light)
GDL variables still don't require type definition, the type is determined during the interpretation from the value to be loaded into the variable.
The output of numeric operators now have a type. You should consult the GDL Manual for this information.
The programmer can safely compare integer types with the equality operator. In fact, from ARCHICAD 9 warnings are now issued, if a
programmer tries to directly compare floating point values with integer values using the equality operator. For equality-comparisons of floating-
point numbers use a small epsilon value meaning the precision of the comparison. For equality-comparisons of a floating-point number and
an integer use the round_int function.

GDL Reference Guide 431

Miscellaneous

Below some sample methods of testing for equivalence between different numeric types are described:

iDummy = 1 * 2
if iDummy = 2 then
! valid comparison, it is true, these statements will be executed

endif

dDummy = 1.5 + 0.5
if dDummy = 2 then
! you never know if it is true, don't trust such comparisons

endif

dDummy = 1.1 * 2
if dDummy = 2.2 then
! you never know if it is true, don't trust such comparisons

endif

! EPS = 0.0001 -> in the master script
dDummy = 1.1 * 2
if abs (dDummy - 2.2) < EPS then
! valid comparison, it is true, these statements will be executed

endif
dDummy = 1.5 * 2
if round int (dDummy) = 3 then

! valid comparison, it is true, these statements will be executed

endif

GDL Reference Guide 432

Miscellaneous

Trigonometry functions

While GDL scripting, you may need various trigonometry functions. The following functions are directly available from GDL: cos, sin,
tan, acs, asn, atn.

All other functions can be easily detived as follows.

Secant Sec(X) =1 / cos(X)
Cosecant Cosec(X) =1 / sin(X)
Cotangent Cotan(X) = 1 / tan(X)

Inv. Sine Arcsin (X) atn(X / Sgr(-X * X + 1))

Inv. Cosine Arccos(X) = atn(-X / sqgr(-X * X + 1)) + 2 * atn(l)

Inv. Secant Arcsec(X) = atn(X / sgr(X * X - 1)) + sgn((X) =-1) * 2*atn(1l)
Inv. Cosecant Arccosec(X) = atn(X / sgr(X*X - 1)) + (sgn(X) - 1) * 2*atn(1)
Inv. Cotangent Arccotan(X) = atn(X) + 2 * atn(l)

Hyp. Sine HSin(X) = (exp(X) - exp(-X)) / 2

Hyp. Cosine HCos(X) = (exp(X) + exp(-X)) / 2

Hyp. Tangent HTan(X) = (exp(X) - exp(-X)) / (exp(X) + exp(-X))

Hyp. Secant HSec(X) = 2 / (exp(X) + exp(-X))

Hyp. Cosecant HCosec (X) = 2 / (exp(X) - exp(-X))

Hyp. Cotangent HCotan (X) = (exp(X) + exp(-X)) / (exp(X) - exp(-X))

Inv. Hyp. Sine HArcsin(X) = log(X + sgr(X * X + 1))

Inv. Hyp. Cosine HArccos(X) = log(X + sgr(X * X - 1))

Inv. Hyp. Tangent HArctan(X) = log((l1 + X) / (1 - X)) / 2

Inv. Hyp. Secant HArcsec(X) = log((sqr(-X * X + 1) + 1) / X)

Inv. Hyp. Cosecant HArccosec(X) = log((sgn(X) * sgr(X * X + 1) +1) / X)
Inv. Hyp. Cotangent HArccotan(X) = log((X + 1) / (X - 1)) / 2

Note:

Logarithm to base N LogN(X) = log(X) / log(N)

GDL warnings

Like any other programming language, GDL has a syntax and logic to be followed. If there is a mistake in syntax, the programmer gets an error
message. If there is something confusing, or some unexpected thing happens when running the script, a GDL warning is sent out.

You can choose WHERE you want to send these messages in Options/Work Environment/Model Rebuild Options:

GDL Reference Guide 433

Miscellaneous

* Interrupt with error messages: a dialog pops up at every problem

* Write Report: the message is written in the Report window

You can choose WHAT you want to send out as message: this setting is available in the Library Developer menu, called '"Check Library Part
Scripts for Warnings''. When enabled, not only errors, but warnings get reported as well according to the WHERE settings.

You can also choose WHEN you want to see warning messages. This can be set in the Library Developer menu as well, called "Always Send
GDL Messages". Turning this feature on, every time GDL is executed, the warnings and errors get force-reported anyway. Leaving it off,
the warning report contexts stay as usual.

Note, that using some combinations of the above switches can result in difficulties: for example, having the ""Always Send GDL Messages'
and the "Interrupt with error messages" enabled together may prevent the execution of something as "simple" as moving an editable hotspot,
popping up dialogs all the time.

Pressing ""Check script" in the library part editor, if there is a problem with your script using the current parameter settings, you will always
get a warning or error message popup window. Using the PRINT command, or the GDL debugger may help a lot locating mistakes hard
to find otherwise.

Note that the line numbers in the GDL warnings refer to the script which contains the problem.

Parsing errors must be handled with extra care. These denote the first line in which the parsing gets impossible but the actual problems may
be some lines before.

Example

The interpreter detects the missing statement first at the endif and stops there; though the problem is obviously around line 4 where an
endif is really missing;

if conditionl then
if condition2 then
! do something

! do something - BUT WE MISSED AN 'endif'
else

! a potentially long code block
endif

GDL Reference Guide 434

Miscellaneous

Warning!

"1 Missing ELSE or ENDIF after IF statement
at line 0 in the 2D script of file

SampleObject.gsm.

| Stop | [Continue]

Here are some examples of the latest warning messages developed, with some explanation:

Warning message Possible explanation

Simple parameter redeclared as an array specifying a simple parameter in an object and using it as an array in
ple p Y pecitying ple p J g y
the called macro

Undefined parentld "id" used in UI_PAGE definition missing parent ID in tabpage hierarchy

View/Project dependent global "globalName" used in parameter script|see the section called “Global Vatiables”

Request "requestName" used in parameter script see the section called “REQUEST Options”

Application query "applicationQueryName" used in parameter script |see the section called “Application Query Options”

Possibly unwanted parameter type change a parameter receives a value not supported by its original type

Hotspot and Hotline IDs

Purpose of hotspot/hotline/hotarc identification

In ARCHICAD the hotspot/hotline/hotatc identification is introduced to support associative dimensioning in section. Via this feature a
dimensioning item can refer to any of a GDL object's hotspots/hotlines. It will become an important issue when the number of hotspots/
hotlines changes between the object's different parameterization states.

Problem of old-school hotspots/hotlines

If the programmer doesn't specify hotspot/hotline/hotarc IDs - ot if he sets them to 0 - ARCHICAD will assign continuously incteasing ordinal
numbers. This solution is correct for static objects but causes dimensioning problems when some hotspots/hotlines appear or hide between
parameter set-ups. Namely, the IDs will be rearranged so they will change, and the associative dimensioning items - in section - will go astray.

GDL Reference Guide 435

Miscellaneous

Correct hotspot/hotline/hotarc scripting
For all these reasons you should assign fix IDs to the hotspots/hotlines in your objects. This can be done by reserving wide intervals for the
hotspots/hotlines of individually controllable features.

Let's take a stait for example. The bounding hotspots/hotlines may use the [1-100] interval, the handrails may use the [200-299] interval and
the risers the [1000-) one. This guarantees that the dimensioning of the handrails won't be corrupted if the number of risers changes or even
if the bottom connection gets mote complex (using more hotspots/hotlines).

Editable hotspots

Since ARCHICAD 8 release you can use editable hotspots in your library parts. The feature is desctibed in Graphical Editing Using Hotspots
except for one possibility.

In some cases you may want to display a different parameter from the edited one. See the example code below:

Editable hotspot example - Shoe / Shoe-rack

We want to have the size of a shoe in meters and in shoe sizes, too. For that we create two parameters and connect them in the parameter script.
Naturally, the type of the explaining parameter can be different (e.g text). We emphasize that the edited parameter is footLength all the
way, footSizeEU - the displayed parameter - must be updated via the parameter script.

([Cen) (e a ®

Display Variable Type Mame Value
- i . .
8 A Dimension 1 1000 -
= B 7ot Dimensicn 2 1000
8 ZENTH g Height 1000
H])(AC_show2DHotspotsin2D 3| Show 20 Hotspots in 30 On
: ¥ ac_bottomlevel 5z Bottom Level 1000
4 ac_toplevel &3 Top Level 0
S footlength eq Foot Length 28T
H] footSizeEU oa8 Foot Size (EU) 41

2D editing

GDL Reference Guide 436

Miscellaneous

Parameter script

DIM lengthValues[10]
DIM sizeValues[10]
for i = 1 to 10
sizeValues[i] =
lengthValues[i]
next i

35
+

e
—~+

35) * 0.007

values "footLength" lengthValues
values "footSizeEU" sizeValues

if GLOB_MODPAR NAME = "footLength" then
parameters footSizeEU = round int (footLength / 0.007)
else
if GLOB MODPAR NAME = "footSizeEU" or GLOB_MODPAR NAME = "" then
parameters footLength = footSizeEU * 0.007
endif
endif
2D script

GDL Reference Guide 437

Miscellaneous

rect2 0, 0, footLength * 0.4, footLength ! or a more realistic shoe model

hotspot2 0, O, 1, footLength, 1 + 256, footSizeEU
hotspot2 0, footLength, 2, footLength, 2, footSizeEU
hotspot2 0, -0.1, 3, footLength, 3

GDL execution contexts

ARCHICAD lets the GDL object know about the context it is being displayed or used in. The next global variables are used for this purpose:
* GLOB_VIEW_TYPE to determine the active view

* GLOB_PREVIEW_MODE to determine the active preview

* GLOB_FEEDBACK_MODRE for editing context indication

* GLOB_SEO_TOOL_MODRE for solid element operations context indication

For the possible values refer the the section called “General environment information” and the following list:

GLOB_VIEW_TYPE = 2 - 2D, floor plan

The model is displayed in the standard 2D floor plan. In a 3D script this means that the model is projected to 2D via the project2D
command. This is the main use of an object - this 2D model must be always correct and efficient.

If GLOB_FEEDBACK_MODE = 1 then the model is displayed via feedback lines on the 2D floor plan during the hotspot editing of the
object. This model is drawn many times in a single second throughout the user interaction. This implies that the model should represent the
essential parts of the object only. Note, that texts (generated by text2 command) are not refreshed in feedback mode - since it would slow
down the output.

GLOB_VIEW_TYPE = 3 - 3D view

The 3D model is displayed in the standard 3D model window or it is the source of photorealistic rendering. This view should omit internal
details of the object, since these cannot be seen anyway. This is the second most important use of an object - the 3D model must be always
correct and efficient. This target type demands correct outside look.

If GLOB_FEEDBACK_MODE = 1 then the 3D model is displayed via feedback lines in the 3D model window during the hotspot editing
of the object. This model is drawn many times in a single second throughout the user interaction. This implies that the model should represent
the essential and visible parts of the object only.

GLOB_VIEW_TYPE =4 - section or GLOB_VIEW_ TYPE = 5 - elevation

The 3D model is displayed in a section/elevation window. For these views, the object should generate internal details which ate unnecessary
for every other view type.

GDL Reference Guide 438

Miscellaneous

If GLOB_FEEDBACK_MODE = 1 then the 3D model is displayed via feedback lines in a section/elevation window during the hotspot
editing of the object. This model is drawn many times in a single second throughout the user interaction. This implies that the model should
represent the essential and visible parts of the object only.

GLOB_VIEW_TYPE = 6 - 3D document

The 3D model is displayed in an axonometric window as a drawing. This is used for documentation, dimensioning in 3D.
GLOB_VIEW_TYPE = 7 - detail drawing

The model is used in a detailed drawing window. The model can be more detailed than in other views consequently. The 2D and 3D models
are not distinguished - that information can be derived from the script type.

GLOB_VIEW_TYPE = 8 - layout

The model is used in a layout window, with its print display. The model should show its printing look. The 2D and 3D models are not
distinguished - that information can be derived from the script type.

If GLOB_FEEDBACK_MODE = 1 then the model is displayed via feedback lines in a layout window during the hotspot editing of the
object. This model is drawn many times in a single second throughout the user interaction. This implies that the model should represent the
essential and visible parts of the object only.

GLOB_VIEW_TYPE =9 - calculation and/or GLOB_PREVIEW_MODE = 2 - listing

The 3D model is used for surface and volume calculation by the listing engine. This context is the proper place to do some model alterations
for listing. E.g. you can generate extra bodies to raise the surface to be painted and the amount of required paint. Use the combination of the
2 globals for the desired result in calculation and listing model generation.

GLOB_PREVIEW_MODE =1 - settings dialog

The model is displayed in the Object Settings Dialog's preview box. The 2D and 3D models are not distinguished - that information can be
derived from the script type. The object should provide a fast, rough preview of the model considering the limited size of the preview.
GLOB_SEO_TOOL_MODE = 1 generating as an operator for Solid Element Operations

The generated 3D model is used as a parameter for solid (CSG) operations. This can be useful, when the object's space demand is larger than
the object itself. E.g. when you subtract a stair from a slab, you'd expect that the stair cuts a hole for the walking people, too. To achieve this,
in this context the stair should generate a model containing that walking space.

Communicating values with ARCHICAD

There are two directions of parameter value flow between ARCHICAD and the library part. The first direction means that the ARCHICAD
informs the library part about an attribute of its context (e.g. the drawing scale of the project or the thickness of the wall a window is placed
into). The second direction is when the library part asserts something about itself which instructs ARCHICAD to change that something in
the direct context of the object (e.g. the depth a wall end cuts in the wall).

GDL Reference Guide 439

Miscellaneous

Information flow from ARCHICAD

There are 3 channels of information coming from ARCHICAD: global variables, parameters with predefined names and directly called values.

Global variables

Global variables are filled by ARCHICAD according to the current project settings and to the placement context of the object. Note, that not
all globals are filled in every context and view.

For the complete list of global vatiables and their relevant restrictions in certain scripts, consult the section called “Global Variables”.

Fix named optional parameters

The newer method of ARCHICAD for providing information is the method of fixed named optional parameters. If a given library part has a
parameter with a name and type matching any optional parameter, ARCHICAD sets its value according to its function.

Refer the section called “Parameters set by ARCHICAD” in the section called “Fix named optional parameters” to learn the ARCHICAD defined library part
parameters.

Requests and Application Queries

For rarely used, special information, library parts use Request calls or Application Queries in their scripts. Unlike global variables, these only
give a return value when the containing actual scripts runs. Note, that most requests and queries should be avoided in a parameter script, or a
master script run as a parameter script. If used in those scripts, the validity of the returned value or the function can not be guaranteed.

Refer the section called “‘REQUEST Options” and the section called “Application Query Options” to learn more about options, parameter script compaltibility and
syntax.

Information coming from the library part

ARCHICAD needs certain informations to use the library parts correctly. These informations depend on the function and the context, and are
stored in the built-in ARCHICAD subtypes as parameters with predefined name and function. In addition to built-in ARCHICAD subtypes
some functions might need fixed named optional parameters.

Consult the fix parameters of built-in subtypes and the section called “Parameters read by ARCHICAD” in the section called “Fix named optional parameters”
to get a view of the possibilities.

Model View Options, Library Global

The display of library parts in the plan may depend on the current view.

GDL Reference Guide 440

Miscellaneous

Internal Model View Options
The view's internal settings are available via GDL global variables (e.g. GLOB_SCALE, GLOB_STRUCTURE_DISPLAY) and request options

(e.g. "window_show_dim", "door_show_dim", "floot_plan_option", "view_rotangle").

Library Global View Options

From ARCHICAD 13 on, you can define view options from your library. These options are stored into each view and they are returned
accordingly.

The following properties/parameters/options should be stored in view dependent library globals:

* showing/hiding opening lines

* showing/hiding minimal spaces

* pen and other view attributes which shouldn't be changed individually for the sake of uniformity (e.g. minimal spaces)

* showing/hiding specific accessory elements (e.g, knobs, handles)

¢ setting 2D symbol types for object groups

Things which should NOT be stored in view dependent library globals: general values for the whole project, general values for the whole
country, values which may be required to be set individually for objects.

To insert a tab page into the MVO dialog, you have to make a library part which is derived from the Library Global Settings (GUID:
{709CC5CC-6817-4C56-A74B-BED99DDBSFFA}) subtype. This object must contain the desired global options as parameters and it must
have a user interface definition for the tab page. The width of the Ul should be set to 600 pixels to match the existing panels. The height of the
Ul is freely definable. It may have a parameter script for connecting parameters or user interface elements.

The LIBRARYGLOBAL command can be used in your placeable elements to query values of your own library global settings object depending
on the current view settings.

Script type specific issues

Master script

When writing the master script you should keep in mind that it will be evaluated before the run of each script by ARCHICAD. This implies

the following things:

* Placing parameter definitions and calculations used by multiple scripts in the master script is a good idea: it reduces file size and makes
elements easily modifiable.

* Be sure to put only common calculations here to avoid an unnecessary increase of the evaluation time of the libpart (remember that master
script is evaluated before each and every script).

GDL Reference Guide 441

Miscellaneous

* Avoid using the parameter buffer in the master script for effectiveness reasons.
* Do not put end commands in the master script; otherwise, ARCHICAD will not run the rest of the scripts.

2D script

Execution context

The 2D script is executed when a 2D model is generated:

* 2D plan

* 2D editing feedback

* 2D preview in the Object Settings dialog window

* Layout drawing

* Layout drawing feedback

Mind that most of the architectural design is done in 2D, so usually this model is the most important. This implies requirements of exact look,
fast generation time and proper function when editing via hotspots.

General recommendation
Try to avoid using fragments and the binary 2D format in order to make objects modifiable.

2D sctipt is much more customizable than the 2D symbol, prefer this solution. In a binary 2D symbol, the curved fills aren't stretched correctly,
you don't have to face this problem in 2D scripting, either.

Defining line and fill properties

From ARCHICAD 9 on you have the possibility to choose from several main categories of lines and fills from GDL. Lines and polygon segments
can be defined as contour, inner or general; fills can be defined cut, cover or drafting. These categories are described in the ARCHICAD user
documentation, let's see how we use them in GDL objects.

Setting the correct properties for lines and fills will enable you to eliminate the display-option dependence from your scripts. Formetly, you had
to add a condition for drawing of some inner lines according to the set display option. Now you should define an inner line for that purpose
and ARCHICAD will display it or not as implied by the display options.

Let's see the extract of the 2D script of a window to summarize the definition cases:

GDL Reference Guide 442

Miscellaneous

line property 0 ! general lines

! the sill is seen from above -> cover fill
poly2 b{2} 4, 1 + 2 * (gs_fillSillCover > 0) + 4 + 64,

| ===== Wall segment / Cavity Closure =====

line property 1 ! inner lines
line?

line property 2 ! wall contours
line?2

! wall segment is seen cut -> cut fill
poly2 b{2} 4, 2 + 4 + 8 + 16 + 32,

| ===== Window Frame =====
line_property 0 ! general lines

! side window frame is seen cut -> cut fill
poly2 b{2} 4, 1 + 2 * (gs _fillFrames > 0) + 4 + 32,

3D script

Execution context
The 3D script is executed each time a 3D model is generated:

* 3D window (wire, hidden line, solid model)
* 2D plan when project? is used to project the 3D model to 2D

GDL Reference Guide 443

Miscellaneous

* 2D section - mind the details

* 3D editing feedback - optimize for speed

* Operator for solid operations in 3D - ask the designer for the desired functionality
* Surface and volume calculation for Listing

* 3D preview in the Object Settings dialog window

* Layout drawing when project?2 is used to project the 3D model to 2D

* Layout drawing feedback

General recommendation
Try to avoid using binary format in order to make objects modifiable.

Use status codes to control the visibility of the objects in hidden line views. Make the contour lines of curved surfaces visible. Hide unnecessary
lines when it is possible.

Define editable hotspots instead of fix ones whenever possible.
Don'tuse del top command to make later modifications easier.

Always restore the global coordinate system at the end of the 3D script and follow it with an end command to make further modifications
on the object easier.

Modeling transparent bodies

Use the body -1 command between solid and transparent parts of an object to make correct shadow casting with Internal Rendering Engine
(e.g., window sash with grilles).

GDL Reference Guide 444

Miscellaneous

Table 12. Examples for transparent bodies

Incorrect

prism_ 10, O.
0, 0,
1, 0,
1, 1,
0, 1,
0, 0,
0.1, 0.1,
0.9, 0.1,
0.9, 0.9,
0.1, 0.9,
0.1, 0.1,

material "blueglass"

prism 5, 0.1
0.1, 0.1,
0.9, 0.1,
0.9, 0.9,
0.1, 0.9,
0.1, 0.1,

1,

4

15,
15,
15,
15,
-1,
15,
15,
15,
15,
-1

Cotrect

prism 10

|

oW

N~ N SN S~ O~

ololoNololoNoh i o)

body -1
material
pris 5,

m_
0
0.
0
0
0

oo

14
4
4
14
4

, 0.1,
0, 15,
0, 15,
1, 15,
1, 15,
0, -1,
0.1, 15,
0.1, 15,
0.9, 15,
0.9, 15,
0.1, -1
"blueglass"
0.1
0.1, 15,
0.1, 15,
0.9, 15,
0.9, 15,
0.1, -1

GDL Reference Guide

445

Miscellaneous

Texture mapping

Always check if texture mapping is applied correctly on your objects. If the default ARCHICAD texture mapping process doesn't produce a
good result, use the coor command to set the correct method. See the case below for example.

GDL Reference Guide 446

Miscellaneous

Table 13. Example code for random and for correctly aligned tiling

Random texture

define texture "owntile" "T.jpg",
1, 1, 128+256, 0

define material "tilemat" 21,
0.7, 0.7, 1,
0.15, 0.95, 0, 0.0,
0, 0,

ind (f£i11, "), 1,

ind (texture, "owntile")

material tilemat

block 1, 1, 1

Aligned texture

define texture "owntile" "T.jpg",
1, 1, 1284256, 0

define material "tilemat" 21,
0.7, 0.7, 1,
0.15, 0.95, 0, 0.0,
0, O,
ind (f£fi11, ""), 1,
ind (texture, "owntile")

material tilemat
block 1, 1, 1

base
vert 0
vert 1
vert 0
vert 0

coor 2 + 256, -1, -2, -3, -4

GDL Reference Guide

447

Miscellaneous

In general, separate bodies which require different texture coordinate systems with a body -1 command.

When using different texture mapping modes, you should take care of correct axis definitions with the vert or teve commands. The node
order is shown below.

You can distort the textures by setting different distances between the nodes defined by the vert or teve commands.
Take care that working with different rendering engines can produce slightly different results, see the examples.

Internal engine:

cylindrical2 (5)
sphedical (4)
a0
box (2)
planar (1)

0 ﬁ

C4D engine:

GDL Reference Guide 448

Miscellaneous

cylindricalZ (3) ﬂ
spherical (4) K
cylindrical (3) H
by MO
planar (1) ﬁ
wo B @ @ © @

Correct texture mapping on complicated surfaces or distorted textures can be modeled with coor and teve commands. In this way you can
make surface models only. In ARCHICAD, there is no direct texture specification. You can define a texture as a part of a material definition.
This texture is used in Rendering Engines and in OpenGL — but in OpenGL we have only limited implementation of our full texture mapping,
and no texture (fill) mapping in our Internal 3D Engine at all.

So with TEVE command you can map a planar texture point (u,v) to a spatial geometric point (x, y, z):

* (%, ¥, z) is measured in meters in the local coordinate system, as usual
* (u, v) is measured in units in the infinite texture space. One unit is as long as the texture extent in that direction.

You can give a negative or more than one value for either u or v.

See the example 1:

GDL Reference Guide 449

Miscellaneous

Table 14. Teve example 1: mapping with no distortion

Program Logic Result
polygon | e il W e |

o D o 7 B ool
base S B
teve 0, 0, 1, 0, 0 0 e 0 e 9D |
teve 2, 0, 1, 1, 0 Illrlllll[lllll[
teve 0, 2, 1, 0, 1 T Er T ET]
teve 2, 2, 1, 1, 1 50 e L e 0 LN
teve 0, 0, 1, 1, 1 ot P D ol 7]

lFlllllll‘ll]llf
edge 1, 2, -1, -1, 0 0 s 0 i 5
edge 2, 4, -1, -1, 0 [[Illllll IIT]I][
edge 4, 3, -1, -1, O
edge 3, 1, -1, -1, O

set material 92

pgon 4, 0, 0, 1, 2, 3, 4
3

coor 1024, 1, 2, 3, -5 texture
T I T T
I.'!'.!I_III
body -1 Sl
; I;'i:'l: 1
S ——
BEmhrmis

If you make a non-regular mapping, the Rendering engine will fit the shape in texture space to the shape in model space:

GDL Reference Guide 450

Miscellaneous

Table 15. Teve example 1: mapping with distortion

Program

base

teve
teve
teve
teve
teve

edge
edge
edge
edge

set material 92

oONONO

~ N N N~

w N -

14
4
4
14

pgon 4,
coor 1024,

body -1

ONN OO

~ N N N N

= w N

14
4
4
14

0,

[ecloloNe)

w
~
PR OOO

Logic

polygon

texture

The same is true for real 3D bodies, as you can see in this example:

Result

GDL Reference Guide

451

Miscellaneous

Table 16. Teve example 1: mapping with distortion on a pyramid

Program Logic Result
alygon

base POL9

teve 0, 0, 1, 0, o ! 1

teve 2, 0, 1, 2, o! 2

teve 2, 2, 1, 2, 2 1 3

teve 2, 2, 1, 0, !

teve 1, 1, 3, 1, 1 !5

edge 1, 2, -1, -1, O

edge 2, 4, -1, -1, O

edge 4, 3, -1, -1, O

edge 3, 1, -1, -1, O

set material 92

pgon 3, 0, 0, 1, 6, -5
coor 1024, -6, -7, -8, =9

body -1

Please note, that you can assign only one texture vertex for a model vertex. It is not possible to assign the texture vertices on a per polygon
basis. It is sometimes an advantage and sometimes a disadvantage.

Picture elements
It may be a good idea to replace complicated parts of a model with a single picture. This method can be well used for trees and bushes.
Using an external image referred by its file name, don't omit the file extension.

When you place a picture in a 3D model using the picture command, a polygon will be created using the picture as a face. The material of the
polygon affects the result of the rendering. With this in mind you should use a matte surface - the color may be chosen depending on the picture.

GDL Reference Guide 452

Miscellaneous

define material "pictmat" 2,
1, 1, 1 ! RGB

material "pictmat"

picture "filename.extension", a, b, mask

The first picture shows a picture on a shiny surface - the undesired side-effect can be observed. In the second picture you can see a texture
on a precisely set material - the wanted result.

Table 17. Transparent images

Shiny surface Matte surface

-

For transparent images - like the tree above - you should consider a more precise definition of the base material. See the following example.

define material "pictmat" O,

1, 1, 1, ! RGB
0.5, 0.8, 0, O,

0, G,

0, 0, 0,

0, 0, O,

0

material "pictmat"

picture "filename", a, b, mask

Group operations

Group operations bring the power of solid operations into GDL. On the other hand they present a risk factor when misused.

GDL Reference Guide 453

Miscellaneous

An important point is that you mustn't place a group inside another one. In such situations you should define a new group like in the source
snippet below:
subtractionResult = subgroup ("sub operand 1", "sub operand 2")

Parameter script

Execution context

The parameter script is run in the following cases:

* Opening the Object Settings dialog window

* Changing a parametet's value in the Object Settings dialog window

* Changing a parametet's value using editable hotspots (even while generating the feedback)

* Stretching the object using conventional hotspots

* loading step-by-step migration libraries (starting from AC18)

The parameter script MAY be run on:

* Dragging the object, in case the object refers to SYMB_ POS X/SYMB POS Y

* Update Zones runs the parameter script of the affected zones if necessary

The parameter script is NOT run on:

* Rebuild

* Changing scale

* Changing story

Editing multiple selection may result unintended parameter values.

Note that the parameter script may be run multiple times on a single user interaction. The reason for this is that the parameter script can change
the value of parameters and this requires the parameter script to be run again, and so on. Therefore it makes no sense to increase a parameter
value by one in the parameter script since you may not be able to predict the cardinality of executions.

The run of the parameter script is linear, and not necessarily multiple. You can force the parameter script to start only once by checking the
Run the parameter script only once option in the object's Compatibility Options panel, if you are sure you don't need it to run many times.
This can make objects react faster, saving time and computing resources.

General recommendation

When you control parameters in the parameter script, try to follow the order of additional parameters.

GDL Reference Guide 454

Miscellaneous

You can define relations between parameters using the GLOB_MODPAR NAME value (containing the name of the last modified parameter).
For example you can make a circle object for which both the radius and the diameter can be set (maybe one of them via the parameter list and
the other via editable hotspots). Don't use this possibility to define the valid range of parameters - use values command instead.

Define the valid value range for all parameters using the values command.

When resetting the value of a parameter in a certain condition in the Parameter Script using the parameters command, a similar statement
must be put into the Master Script. This keeps the object's display correct in cases when the parameter sctipt is not run by the system. E.g;:

! parameter script
if bCondition then

yy =1
parameters yy = Vyy
endif

! master script
if bCondition then yy =1

Font type names

If you want to have a string parameter - named stFont in the sample - for setting the font type for a text, use the following value list definition
to get a platform independent sound solution.

DIM fontNames][]
request ("FONTNAMES LIST", "", fontNames)
values "stFont" fontNames, CUSTOM

If you do this in the ARCHICAD_Library_Master.gsm object, every loaded library part with the same "stFont" parameter will automatically
receive the same value list.

CUSTOM value is needed to deal with missing or unexpected font types.

Setting limits for array parameters
Array parameters should be used for homogeneous data; i.e. all array elements should have a similar meaning,

Example code snippet for limiting all components of array parameter gridXPosition to the range [1, 5] and how to use it on the Ul

GDL Reference Guide 455

Miscellaneous

! parameter script
values "gridXPosition" range [1, 5]

! UI script
for i = 1 to nGridLines ! nGridLines: number of lines in the array parameter
ui infield{3} gridXPosition[i], xPos, yPos, infieldWidth, infieldHeight

yPos = yPos + diffy
next i

User Interface script

Execution context
The User Interface script is displayed in only one context: the user interface tab page in the Object Settings dialog window.

The script is run on the initialization of the dialog window and after each user interaction and parameter change.

General recommendation

If you want the Custom Settings page to appear in the topmost Ul selector as default instead of the parameter list, push the Set as Default
button (or add the "STBit_UIDefault" bit to the "StatBits" section of the XML). Otherwise the parameter list will be the starting tab. For
Hierarchical pages, push the Hierarchical Pages button in the GDL Editot/UI window (ot add the "STBit_UlUseHierarchicalPages" bit to
the "StatBits" section of the XML).

When styling texts, note that extra small letters cannot get any style but plain. In addition, Outline and Shadow styles have no effect on Windows
platform.

Note that ARCHICAD tries to match the fonts used in dialogs with the operating systems. When scripting graphical user interfaces on Windows,
leave more space around texts otherwise Mac users will see truncated texts.

Thumbnail control pictures

If youuse the ui infield command to define a thumbnail view field for value lists, be aware of the following, There should be equal sized
thumbnails for all parameter values (including empty value). Thumbnails have to be the same size at which they will be displayed otherwise
ARCHICAD will distort them. We advise you to use ARCHICAD's figure tool for assembling the thumbnails into one picture file.

GDL Reference Guide 456

Miscellaneous

Table 18. Infield with picture

Input picture Output picture

i Evergreen Types

General Evergr... General Evergr... General Evergr... Thuja

A

)

Juniper

A user interface picture used by only one object should be integrated in the library part file itself. This can be done using the LP_XMILConverter
tool.

When using an external image referred to by its file name, don't omit the file extension. This way, you will avoid errors stemming from pictures
and objects having the same name.

Keep all pictures used by interface scripts in the Macros folder, or embedded in the object itself. Using external images: add the
file dependence command to make sure they are saved in archive format with the object.

Tab page handling

Starting from ARCHICAD 18, a new hierarchical paging option is available for tabpage selection. This is accessed via the UI_PAGE command,
by adding some extra parameters, and setting the Hierarchical Pages parameter in the object itself. Doing so, a separate popup tabpage control
will appear above the custom Ul field. The order and hierarchy of the available pages can be defined by the ID of the pages. Root ID is always
—1. The possibility to set up an "oldschool" tabpage selector within the UI page still remains available.

Let's see an example sctipt:

GDL Reference Guide 457

Miscellaneous

! Master Script

! TabIDs

TABID ROOT = -1
TABID PAGE 1 = 50
TABID PAGE 2 = 60

dim uiUsedPagelIDs[] [2]
10

dim uiUsedPageNames|[] [2]

idxPage =1

uiUsedPageNames [idxPage] [1]
uiUsedPageNames [idxPage] [2]

uiUsedPagelIDs[idxPage] [1]
uiUsedPageIDs [idxPage] [2]

idxPage = idxPage + 1

uiUsedPageNames [idxPage] [1]
uiUsedPageNames [idxPage] [2]

uiUsedPageIDs [idxPage] [1]
uiUsedPagelIDs[idxPage] [2]

"PageName 1"

= "pageIconName 1.png"

= TABID PAGE 1
= TABID ROOT ! Parent Page

= "PageName 2"
= "pageIconName 2.png"

= TABID PAGE 2
= TABID PAGE 1 ! Parent Page

file dependence "pageIconName 1.png"
file dependence "pagelIconName 2.png"
file dependence "pageIconName 3.png"

ID

ID

GDL Reference Guide

458

Miscellaneous

! Parameter Script

dim pageValues][]
for i = 1 to vardiml (uiUsedPageIDs)

pageValues[i]= uiUsedPageIDs[i][1]
next i

values "gs ui current page" pageValues

! UI Script
ui dialog "Custom Settings Title"
ui current page gs ui current page

for 1 =

1 to vardiml (uiUsedPagelIDs)
if uiUsedPageIDs([i][1]

= TABID PAGE 1 then

ui page uiUsedPagelIDs[i] [1], uiUsedPageIDs[1i] [
uiUsedPageNames[i] [1], uiUsedPageNames]|[i
if gs ui current page = TABID PAGE 1 then
gosub "pageSubroutinTitle 1"

2],
1121

endif
endif
= TABID PAGE 2 then

ui page uiUsedPageIDs[i][17, "uiUsedPageIDs[i] [2],
uiUsedPageNames[i] [1], uiUsedPageNames[i][2]

if gs_ui current page = TABID PAGE 2 then
gosub "pageSubroutinTitle 2"

if uiUsedPagelIDs([i][1]

endif
endif
next i

459

GDL Reference Guide

Miscellaneous

|
! Call User Interface Macro's TabPages

call "ui customMacro" parameters all uiUsedPagelDs = uiUsedPagelDs,
uiUsedPageNames = uiUsedPageNames
end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! en

|
! UI Page Subroutines

"pageSubroutinTitle 1":
! UI Page 1 description
return

"pageSubroutinTitle 2":
! UI Page 2 description
return

Thumbnail controls with dynamic items

From ARCHICAD 10 on, a new dynamic method is available for linking control items and value list items. Using this method you can localize
the logic of the availability of parameter values to the parameter script - the control will adopt the set of available values. This dynamic linking is
available forui infield{3}andui infield{4}. The old-style static linking is still working for static functions (usingui infield

andui infield{2}).

The two components of the dynamic method are:

1. Define the user interface control with an option for every possible value.

The example shows a popup menu control (method = 2) which uses an index image containing 2 rows and 4 columns. The sample control

supports 8 possible values.

GDL Reference Guide

460

Miscellaneous

ui infield{3} iJunctionType, xColumnl-10, 44, 200, 50,
2, 3, 8, 2,

, 45, 70, 45,
“Junction Type Al°
“Junction Type B1°
“Junction Type C1°
"Junction Type D1°
“Junction Type A2°
“Junction Type B2°
“Junction Type C2°
“Junction Type D2°

~J
(@)

O ~JoO U WN
NS S SN S S S S N
OO JUT W BN

NS S S SN S SN N

N N N N SN SN S~ O~

2. Set the list of available values for the parameter under the given circumstances.

if iLeftNeighbour = 1 then
values "iJunctionType" 1, 3, 4, 6
else
if iRightNeighbour = 1 then
values "iJunctionType" 2, 5, 7, 8
else
values "iJunctionType" 1, 5, 7
endif
endif

The resulting control is shown in the image below. (iLeftNeighbour = 0, iRightNeighbour = 1)

GDL Reference Guide

461

Miscellaneous

L]] = .
;i,-\h == Junction Type &1 ‘,'\h Junction Type Al

-] c
il \l _-_)- Junction Type A2
:I.O}' =) ~ Junction Type B2

'fE) ‘2 + lunction Type D2

Transparent UI pictures

In ARCHICAD 10 a new method has been introduced that can handle alpha-layer based transparent pictures. The following controls handle
pictures with alpha layers correctly:

* ui_pict

* ui_infield{3}, method = 1 (thumbnail view control)

* ui_infield{3}, method = 2 (popup with icons and texts)
* ui_infield{3}, method = 3 (popup with icons only)

* ui_infield{3}, method = 4 (icon radio push button)

* ui_infield{4}, method = 1 (thumbnail view control)

* ui_infield{4}, method = 2 (popup with icons and texts)
* ui_infield{4}, method = 3 (popup with icons only)

* ui_infield{4}, method = 4 (icon radio push button)

Font sizes on the Ul

If you use static texts (possibly in combination with the ui_style command), be aware of the following;

GDL Reference Guide 462

Miscellaneous

Because of the differences of the targeted operating systems, font sizes are not the same on Windows and on Mac. As a side effect, the extra
small font size is a bit larger than the swa// one on Windows. As a general rule, always test user interfaces on both platforms to check overlapping
and clipping;

Furthermore, special styles like Bold, Italic and Undetline are not allowed in combination with ex#ra small size. Outline and Shadow are old
Macintosh styles, which are no longer used.

The two pictures show the look of static texts with different sizes and styles.

On Windows:
small xsmall large
normal ui_style 0.0 ui_style 1,0 ui_style 2,0
bold ui_style 0,1 ui_style 1,1 ui_style 2,1
italic: ui_style 0,2 ui_style 1,2 w_siple 2.2
underline ui styleD 4 ui_style 1,4 ui style 2.4
On Mac:
small xsmall large
normal ui_style 0,0 ui_style 1,0 ui_style 2,0
bold ui_style 0,1 ui_style 1,1 ui_style 2,1
italic ui_style 0.2 ui_styla 1,2 ui_style 2,2
underling ui style 0.4 ui_style 1,4 ui_style 2.4

Forward Migration script

Execution context

The FWM script is executed when a project saved in an earlier version of ARCHICAD is opened in a later version (starting with ARCHICAD
15) with the updated library. This new library can be loaded manually or by using the Consolidate option in the Library Manager. If a placed
instance of an object has a new, changed Main ID and a valid Forward Migration Script in the new library, it can be automatically substituted
by ARCHICAD. If the execution of the script is successful, the old element gets replaced by the new one.

This script enables the object to set the new parameters based on the old ones, without feature loss or a major change in appearance.

GDL Reference Guide 463

Miscellaneous

General recommendation

The first line of the script fills the FROM_GUID global variable (this contains the main ID of the original object to be migrated) into the
"actualGuid" variable. You may want to use the following structure to ensure maintainability.

The rest of the script is divided into subroutine calls, one for every change of GUID. Every block must have a cortesponding line in the
Migration Table of the object and a block in the Backward Migration script. The latest change of Main ID always has to be the last call of this
script. In every block you set the ID to start from (_startID), and the one to end up with (_endID), define the migration logic in a subroutine
(for details and GDL commands, see the GDL Reference Guide), and at the end of the block you always set the new "
ID, which means that the upgrade process will stop at the previous block's version of the object) into the "actualGuid" vatiable. Example:

_endID" (or set an empty

GDL Reference Guide 464

Miscellaneous

actualGUID = FROM GUID

! Subroutines
|
_startID = "AAAA-AAAA-...AAA"
endID = "BBBB-BRBB-...BBB"

gosub "migrationstepname FWM"

! Set Migration GUID
I

setmigrationguid actualGUID

énd ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! en
|

|
! migrationstepname
!

"migrationstepname FWM":
if actualGuid = startID then
newParameter = oldParameter
parameters newParameter = newParameter
actualGuid = endID
endif -

return

Backward Migration script

Execution context

The BWM script is executed when a project is saved to the previous version of ARCHICAD. If the current version of the library part has a
different Main ID than its equivalent in the previous version, the migration script of the object is evaluated. As a result, the libpart will be either
downgraded if possible (sometimes with some minor compromise, if it does not affect the item's main functions), or will be lost completely

GDL Reference Guide 465

Miscellaneous

(in this case, it will appear as a "missing" dot sign in the eatlier version project). The latter happens when a new function set introduced in the
current version represents a major change compared to the previous version.

A successful backward migration process should convert the object's parameters in a way that avoids major feature loss or changes in appearance.

General recommendation
The first line of the script sets the continuity control variable to valid. You may want to use the following structure to ensure maintainability.

The rest of the script is divided into subroutines: one change of Main ID is one subroutine. Every subroutine must have a corresponding line
in the Migration Table of the object and a corresponding subroutine in the Forward Migration script. The latest step back in changing Main
ID always has to be the first subroutine of this script.

At the start of each subroutine the target GUID is checked. If not empty, the script runs in called order. Backward migration only works for one
version back, so the targetGUID only needs to be set once (except when you make a fork in the migration to separate previous-version objects).
The end of the subroutine is about setting the destination (old) ID into the "targetGuid" variable. If you set an empty ID to the vatiable, the
downgrade process is canceled there. If the "tatgetGuid" matches the TO_GUID global variable (containing the main ID of the target element
in the conversion), the first part of the migration process is complete.

Adding a title or a short description of the migration step for every subroutine is highly recommended. You should use the same title for the
Forward Migration script pair of the subroutine.

After you have reached the desired stage of the object's devolution, you have to set the placed object's ID by using the setmigrationguid

In case the migration returns an empty ID, the element is going to be missing from the project opened in the previous version.

GDL Reference Guide 466

Miscellaneous

targetGUID = TO GUID

! Subroutines
|

gosub "migrationstepname BWM"

! Set Migration GUID
!

setmigrationguid targetGUID

end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! en
|

! migrationstepname
!

"migrationstepname BWM":
if targetGUID # "" then
bMigrationSuccess = 1
if bMigrationSuccess = 1 then
oldParameter = newParameter
parameters oldParameter = oldParameter
else
targetGuid = ""
endif
endif
return

Migration table

Every time you change an object's Main ID, you need to fill in the old ID into the Migration Table of the element. Each line contains a previous
ID and an ARCHICAD version number (or 0, if you change more than once between two versions). During forward migration, the program
scans this list of ID-s, preselecting the elements available for the migration process. During backward migration, scanning this list the program

GDL Reference Guide 467

Miscellaneous

chooses only those with a version equivalent to the previous ARCHICAD version. Every line of this table must have at least one corresponding
subroutine in the Forward Migration script and the Backward Migration script.

Writing macros
Try to collect frequently used functionalities into macros. Calling a macro object from many objects can reduce library size and increase
soundness by reducing redundancy.

However avoid creating macros with small functional addition to the previous abstraction level. For example don't create a block_1x1x1 macro
for the generation of 2 Im x Im x 1m block. This increases the number of macro calls needlessly and it may worsen transparency.

Don't ever use .gdl as macros, use macro objects instead.

When you call a macro, always use the call keyword and put the name of the macro between quotation marks (e.g, call
"m rail wired").Do not create macro calls where the macro name is a parameter to avoid missing macros from archive files. ARCHICAD
saves the default macro only into the archive file. (Workaround: call all parameter values as a macro after the end statement.)

Be careful at using the parameter buffer. Save the content of it at be beginning of the script if you want to use it. Be sure that only the defined
(return) values are in the buffer by the end of the script.

Macro return parameters

From ARCHICAD 10 on macros can return parameters to the caller object. At the caller's side, returned values can be collected using the
returned parameters keyword followed by a variable list. The returned values will be stored in these variables in the order they are
returned in the called macro. The number and the type of the variables specified in the caller and those returned in the macro must not match. If
there are more variables specified in the caller, they will be set to 0 integer. Type compatibility is not checked: the type of the variables specified
in the caller will be set to the type of the returned values. If one of the variables in the caller is a dynamic array, all next values will be stored in it.

In the macro object the end and the exit commands define the values that have to be return to the caller object. See the example below.

Advanced parameters all

From ARCHICAD 10 on after parameters all keyword you can specify extra parameters to pass it to the macro. They will override the
values coming from the caller or parameters of the called macro left to be default. The macro can return parameters in this case also.

Faster mactro call

Speed of parameter value transferring between the caller object and the macro was improved in ARCHICAD 10. Find out tips about utilization
of macro call's speed enhancements in the section called “Speed Issues”.

GDL Reference Guide 468

Miscellaneous

Macro call example

Script in the caller object.

call "myMacro" parameters all extraParam = 1

call "myMacro" parameters returned parameters realWidth

call "myMacro" parameters all extraParam = 1 returned parameters realWidth
call "myMacro" parameters all returned parameters realWidth

Script in the macro.

realWidth = 2
end realWidth

Background Conversion Issues

Starting from ARCHICAD 19, all calculations necessary for opening 3D related views or viewpoints will be run as backgound processes.
Supported viewpoints:

* 3D Window

* Section

* Elevation

* Interior elevation (except when "Add bounded area" or "Detect and Fit to Zones" are enabled)

* 3D Document

If the backgound process is successful, the requested view takes only a few seconds to open. However, there may be some non thread-safe

library parts or objects placed in the planfile, which can disable background calculations:

* Zones

* Objects including text engine operations (except set style and define style commands)

* Objects using the following requests: "CUSTOM_AUTO_LABEL", "ZONE_COLUS_AREA", "MATCHING_PROPERTIES",
"ASSOCEL_PROPERTIES", "STYLE_INFO", "TEXTBLOCK_INFO", "FONTNAMES_LIST"

* Objects using variable named macros, or non-thread safe macros. Project2 command or symbol fill definition are counted as non-thread
safe macro calls.

The relationship between GDL add-ons and background processing depends on the add-on itself.

Deterministic add-ons (not affecting background processing):

GDL Reference Guide 469

Miscellaneous

* Polygon Operations

* Property Add-on

¢ If used in read-only mode, and with files loaded in the active library: Text or Data I/O Add-ons, XML Add-on
Non-deterministic add-ons (disabling background processing):

* DateTime Add-on
* FileManager Add-on
* If not used in read-only mode, or not with files loaded in the active library: Text or Data I/O Add-ons, XML Add-on

The object scripts are examined statically, so the background conversion is disabled even if the obstacle function itself is not executed with
the current settings of the library part.

To check the loaded library parts' compatibility with background processing, use the "Check if Library Parts are Thread Safe" command of
the Library Developer menu.

Speed Issues

Try to avoid using the project2 command as it slows down plan regeneration.

Reduce the number of surfaces in your model to the minimum in order to make 3D regeneration faster. Use RESOL, TOLER and RADIUS
commands to control segmentation of curved surfaces.

Note that closed bodies regenerate faster in 3D than open ones (e.g,, a cylinder is faster than an open tube).

When scripting the master script consider that the master script is run before each script type, so don't put script-type specific calculations here.
This is the place for common calculations needed by multiple scripts.

When scripting doors and windows avoid making unnecessary cuts (wallhole and wallniche).
Use integer values and operations whenever reasonable, these are much faster than floating point operations.
Try to minimize the usage of string operations.

In case of calling macros use the same parameter order after the call command as it is in the parameter list of the macro. call "myMacro"
parameters all is faster when the parameter orders of the macro and the caller object are similar. Try to avoid transferring string type
parameters in macro calls. Use numeric types where possible.

Windows-Macintosh compatibility

Though GDL objects and libraries are considered by GRAPHISOFT as platform independent, the following difficulties occur when objects
are manually moved from Windows to a Macintosh:

* Windows fonts will be replaced by the default Macintosh font in objects and list templates and vice-versa.

GDL Reference Guide 470

Miscellaneous

* Text type listing files (listset.txt, listkey.txt, list templates, etc.) could lose line breaks, therefore listing won't work (non-utf-8 coded texts,
usually)

Changing platform with binary libraries

To avoid the above problems, save a .pla archive file of your library on the first platform, then extract it on the second. This way the non-
utf-8 files will be converted correctly as well.

DoORS AND WINDOWS

This section discusses the various special options related to the creation of Door/Window library elements.

General Guidelines

Once a doot/window is inserted into a wall, the default position of these library parts’ coordinate system is rotated so that the x-y plane is
vertical and the z axis points horizontally into the wall. The origin is placed on the bottom center of the wall opening, on the exterior side of
the wall. This way, doors/windows can be easily modeled by elements in the x-y plane. See the illustrations below.

Because of the special behavior of these library parts, the 2D symbol is generated from a special built-in projection otherwise not accessible by
users (an upside-down side view from a 90 degtee ditection). The symbol and the 3D shape ate fitted to the Door/Window origin by the lowet
(y) centet (x) of the bounding box, but no adjustment is made along the z axis to enable users to design doors/windows extending beyond
the wall in either z direction.

Consideting these rules, here ate some hints that will help you construct doors/windows that will wotk propetly:

GDL Reference Guide 471

Miscellaneous

* When constructing the doot/window in the floot plan window, visualize it as if you ate looking at it from the inside of the wall it will be
inserted into.

* Think of the project zero level as the external surface of the wall.

* Elements that should be inside the wall, like the window frame, should be above the zero level.

* Door panels opening to the outside should be below the zero level.

Positioning

A door is correctly defined if its insertion works as follows: clicking to the right of the insertion point means that the door leaf will open to the
same side on the right. A window is correctly defined if, upon insertion, the side that is clicked corresponds to the outer side.

An opening position can take one of 8 forms. These are represented by three global variables in GDL:

* mirroring to the Y-Z plane in 3D or to the Y axis in 2D (SYMB_ MIRRORED)

* mirroring by the longitudinal axis of the wall (rotation by 180 degrees: SYMB ROTANGLE)

+ flipping (TIDO REVEAL STDE)

Usually each part of the window should react in a different way to these conditions. The specification must be clear on deciding how the parts
of the object should, or should not act. E.g. a door leaf moves with these transformations, but the cavity closure does not. To keep the library
part consistent, several transformations should be used for these combinations. When changing the reveal side (flipping), the library part is
mirrored and dragged back by the value of the nominal frame thickness.

Illustration of the 8 states with a simplified door - the little circle flags the origin.

GDL Reference Guide 472

Miscellaneous

Global variables 1. Example drawing 1. Global variables 2. Example drawing 2.

WIDO REVEAL SIDE = 0 WIDO REVEAL SIDE = 0
SYMB_MIRRORED =0 SYMB_MIRRORED =1
SYMB_ROTANGLE =0 SYMB_ROTANGLE =0

O O

bz © S NN

WIDO_REVEAL_SIDE =1 WIDO_REVEAL_SIDE =1
SYMB_MIRRORED =0 SYMB_MIRRORED =1
SYMB_ROTANGLE = 180 SYMB_ROTANGLE = 180

O

-
7

WIDO REVEAL SIDE =1 WIDO REVEAL SIDE =1

SYMB MIRRORED = 0 SYMB MIRRORED = 1
SYMB_ROTANGLE = 0 SYMB_ROTANGLE = 0

O
WIDO REVEAL SIDE = 0 o Bz WIDO REVEAL SIDE = 0 | Y] g

SYMB MIRRORED = 0 SYMB MIRRORED = 1

SYMB ROTANGLE = 180 SYMB ROTANGLE = 180

Sample code undoing the automatic transformations done by ARCHICAD:

GDL Reference Guide 473

Miscellaneous

! 2D script
bRotated = round int (SYMB ROTANGLE) = 180
if bRotated then
rot2 180
endif
if SYMB MIRRORED then
mul2 -1, 1
endif
if WIDO REVEAL SIDE exor bRotated then
add2 0, WALL THICKNESS
endif -

! 3D script
bRotated = round int (SYMB ROTANGLE) = 180
if bRotated then
roty 180
endif
if SYMB MIRRORED then
mulx -1
endif
if WIDO REVEAL SIDE exor bRotated then
addz -WALL THICKNESS
endif -

Note that though flipping and mirroring is possible for all doors and windows, it is incorrect in manufacturer libraries where a library part
models a real window - which, of course, cannot be turned inside out. In this case the script should undo the mirroring done by ARCHICAD.

Creation of Door/Window Library Parts

When creating Door/Window type library parts, several possibilities exist, presenting different problems:

* Creation of rectangular doors/windows in straight walls
* 3D related challenges
* Creation of non-tectangular doots/windows in straight walls
* Creation of rectangular doors/windows in straight walls
* Ctreation of non-tectangular doots/windows in curved walls
* 2D related challenges
* Cutting custom wall opening

GDL Reference Guide 474

Miscellaneous

* WALLHOLE2

* Extending the wall polygon
+ WALLBLOCK2

* WALLLINE2

*« WALLARC2

Rectangular Doors/Windows in Straight Walls

This is the easiest and most straightforward way of creating doors and windows. The use of simple GDL commands such as PRISM_ or RECT
is recommended.

If you want to match the surface materials of door/window elements to those of the wall, the bottom sutface of the elements should match
the outside, and the top surface the inside of the wall. You can achieve this from your scripts using the WALL_MAT_A, WALL_MAT_B
and WALL_MAT EDGE global variables reptresenting the matetials of the wall into which the doot/window is placed. In the 2D script,
the WALL_SECT_PEN, WALL_FILL_PEN and WALL_FILL global variables can be useful, as these give you the pen numbers of the wall
contour and fill plus the index number of the fill of the wall on the floor plan into which the doot/window is placed. With composite walls,
you have to use the corresponding global variables.

See Miscellaneous for details.

The object libraties come with a large set of doot/window mactos. These GDL scripts contain common building elements which are used by
many doors/windows in the library. Thete ate macros for generating commonly-used frames, panels and many othet types of doot/window
patts. Open some doot/window library parts to see what kind of mactos they call and what type of parts those mactos generate.

Excample:

GDL Reference Guide 475

Miscellaneous

a=0.9: b=1.5: ¢=0.1: d=0.08

e=0.08: f=0.9: g=0.03: h=3

PRISM 10, c,
-a/2, 0, 15, a/2, 0, 15,
a/2, b, 15, -a/2, b, 15,
-a/2, 0, -1,
-a/2+d, 4, 15, a/2-d, 4, 15,
a/2-d, b-d, 15, -a/2+d, b-d,
-a/2+d, d, -1

ADD -a/2+d, £, O

BRICK a-2*d, e, c

ADD -g/2, -f+d, c/2

GOSUB 1

ADDZ -g

GOSUB 1

DEL 2

MATERIAL "Glass"

ADD 0, -f+d, c/2

RECT a-2*d, f-d

ADDY f-d+e

RECT a-2*d, b-f-e-d

END

1:

FOR i=1 TO h-1
ADDX (a-2*d)/3
BLOCK g, f-d, g
ADDY f+e-d
BLOCK g, b-f-d-e, g
DEL 1

NEXT i

DEL h-1

RETURN

15,

GDL Reference Guide

476

Miscellaneous

3D Related Challenges

Non-Rectangular Doors/Windows in Straight Walls

When working with doors/windows, it is important to know that placing a door/window always cuts a rectangular hole into the wall. The size

of this hole is determined by the A and B parameters of the door/window library part. However, when the door/window is not rectangular in

elevation, it does not entirely fill the cut rectangular hole. The solution to this is to use the WALLHOLE or WALLNICHE command to define

a polygon shape to be cut into the wall where the dootr/window is placed. Thete are two solutions for this:

* The 3D script has to contain parts that generate those parts of the wall that fill the hole between the doot/window body and the edges of
the rectangular wall cut. In this case, special attention must be paid to the visibility of the edges of these fillings.

%

\

* With the WALLHOLE or WALLNICHE command, you can define a polygon shape to be cut into the wall whete the doot/window is placed.
WALLHOLE

WALLHOLE n, status,
x1, yl, maskl,

xn, yn, maskn
[4 X 4 y 4 Z 1
n: the number of polygon nodes.

status:
1: use the attributes of the body for the generated polygons and edges,
2: generated cut polygons will be treated as normal polygons.

xi, yi: cross-section polygon coordinates.

GDL Reference Guide 477

Miscellaneous

maski: similar to the CUTPOLYA command:
maski = j; + 2*jp + 4*j3 + 64*7J, where eachj can be 0 or 1.

X, y, z: optional ditection vector (default is doot/window Z axis).

This command can be used in doors’/windows’ 3D script to cut custom hole(s) in the wall they ate placed into. During the 3D generation of
the current wall, the 3D script of all its doors/windows is interpreted without model generation to collect the WALLHOLE commands. If they
exist, the current wall will be cut using an infinite tube with the polygonal cross-section and direction defined in the script. There can be any
number of WALLHOLE: for any door/window, so it is possible to cut mote holes for the same door/window, even intersecting ones. If at
least one WALLHOLE command is interpreted in a door/window 3D sctipt, no rectangular opening will be generated for that door/window.

Note: The 3D reveal will not be generated automatically for custom holes, you have to generate it from the script. The hole customized this
way will only be visible in 3D, because WALLHOLE commands do not have any effect in 2D. A 2D representation can be scripted if needed
(used with framing in plan off).

The use of convex polygonal cross-sections is recommended; using concave polygons may result in strange shadings/rendetings ot cut etrors.

Convex polygons can be combined to obtain concave ones. Mirroring transformations affect the cutting direction in an unexpected way - to

get a more straightforward result, use the WALLNICHE command.

GDL Reference Guide 478

Miscellaneous

Example 1:

RESOL 72

11 = 2.7: 12=1.2

hl=2.1: h2=0.3: h3=0.9

r = ((11/2)72+h2"2)/(2*h2)
a = ATN((11/2)/ (r-h2))
WALLHOLE 5, 1,

-11/2, h3, 15,
11/2, h3, 15,
11/2, hl-h2, 13,
0, hl-r, 915,

0, 2*a, 4015
WALLHOLE 4, 1,

11/2-12, 0, 15,

11/2, 0, 15,

11/2, h3, 15,

11/2-12, h3, 15

GDL Reference Guide

479

Miscellaneous

Example 2:

WALLHOLE 5, 1,
-0.45, 0, 15,
0.45, 0, 15,
0.45, 1.5, 15,
0, 1.95, 15,
-0.45, 1.5, 15

PRISM 12, 0.1,
-0.45, 0, 15,
0.45, 0, 15,
0.45, 1.5, 15,
0, 1.95, 15,
-0.45, 1.5, 15,
-0.45, 0, -1,
-0.35, 0.1, 15,
0.35, 0.1, 15,
0.35, 1.45, 15,
0, 1.80, 15,
-0.35, 1.44, 15,
-0.35, 0.1, -1

WALLNICHE

WALLNICHE n, method, status,
rx, ry, rz, d,
x1, vyl, maskl, [matl,]

xn, yn, maskn[, matn]
Similar to the CUTFORM command.
method: Controls the form of the cutting body:

1: prism shaped,
2: pyramidal,

3: wedge-shaped cutting body. The direction of the wedge’s top edge is parallel to the Y axis and its position is in rx, ry, 1z (ry is ignored).

status: Controls the extent of the cutting body and the treatment of the generated cut polygons and new edges.
status = j1 + 2*jy + 8*j4 + 16*j5 + 32*jg + 64*J5 + 128*jg + 256*jg, where eachjcan be O or 1.

GDL Reference Guide

480

Miscellaneous

j1: use the attributes of the body for the generated polygons and edges,

j2: generated cut polygons will be treated as normal polygons,

Ja: define the limit of the cut (with j4),

js: define the limit of the cut (with j5),

Je: generate a boolean intersection with the cutting body rather than a boolean difference. (can only be used with the CUTFORM
command),

j7: edges generated by the bottom of the cutting body will be invisible,

jg: edges generated by the top of the cutting body will be invisible.

Jo: cutting shape has custom side materials (mati).

J4 = 0 and 35 = 0: finite cut,
j34 = 0 and j5 = 1: semi-infinite cut,
jJ4 = 1 and 35 = 1: infinite cut,

rx,ry,rz: defines the direction of cutting if the cutting form is prism-shaped, or the top of the pyramid if the method of cutting is
pyramidal.

d: defines the distance along rx,ry,rz to the end of the cut. If the cut is infinite, this parameter has no effect. If the cut is finite, then the start
of the cutting body will be at the local coordinate system and the body will end at a distance of d along the direction defined by rx,ry,rz.

If the cut is semi-infinite, then the start of the cutting body will be at a distance of d along the direction defined by rx,ry,rz and the direction
of the semi-infinite cut will be in the opposite direction defined by rx,ry,rz.

mati: side material of the cutting shape (when status j9 = 1)

mask: Defines the visibility of the edges of the cutting body.
j1: the polygon will create a visible edge upon entry into the body being cut,
j2: the lengthwise edge of the cutting form will be visible,
j3: the polygon will create a visible edge upon exiting the body being cut,
j4: the bottom edge of the cutting form will be visible,
j5: the top edge of the cutting form will be visible,
j7: controls the viewpoint dependent visibility of the lengthwise edge.

Rectangular Doors/Windows in Curved Walls

When placing doors/windows into curved walls, the sides of the hole cut into the wall can vary according to the picture below.

GDL Reference Guide 481

Miscellaneous

The hole in the wall on the left is created when the program automatically cuts the hole for the door/window. In this case the sides will be of
radial direction. On the right, the hole is cut using the WALLHOLE command in the 3D Script of the doot/window object. The object itself
needs to be written by taking these factors into consideration.

Another thing to consider is whether the doot/window placed into the cutved wall is a straight ot a curved one.

Q== G——0

In the case of a straight doot/window, as on the left above, the thickness and width of the object and the thickness of the wall are closely related,
since above a certain dimension the object would fall outside of the wall. When using true curved doots/windows, this problem doesn’t occut.

Excample: Window with a frame following the curve of the wall

: N T

|
{

—_ |

~_

GDL Reference Guide 482

Miscellaneous

RESOL 72
ROTX -90 : MULY -1
C= 0.12 : Z=360*A/ (2*WIDO ORIG DIST*PI)

Y= 360*C/ (2*WIDO ORIG DIST*PI) : Al= 270+2/2 A2=270-2/2
GOSUB "curved horlzontal frame"
ADDZ B
MULZ -1
GOSUB "curved horizontal frame"
DEL 2 - -
ADDZ C
GOSUB "vertical frame"
MULX -1 -
GOSUB "vertical frame"
END -
"curved horizontal frame":
PRISM 9, C,
cos (A2)*R , SIN(A2)*R +R , 11,
cos (A2+Y)*R_, sin(A2+Y)*R +R , 13,
0, R, 900,
0, Z_Z*Y 4009,
cos (A R , sin(Al)*R +R , 11,
cos (A) (R -0.1), sin(Al)*(R -0.1)+R , 11,
cos (Al-Y)*(R -0.1), sin(Al-Y)*(R -0.1)+R_, 13,
0, -(z-2*Y), 4009,
cos(A2)*(R -0.1), sin(A2)*(R -0.1)+R , 11
RETURN - - -
"vertical frame":
PRISM 4, B—Z*C,
~ cos(A2)*R , sin (A2)*R +R , 10,
cos(A2+Y *R, sin(A2+Y *R7+R7, 15,
cos(A2+Y) (R -0.1), sin(A2+Y) (R -0.1)+R , 10,
(A (A

cos *(R_-0.1), sin

RETURN

Non-Rectangular Doors/Windows in Curved Walls

The general guidelines given for rectangular doors/windows in curved walls applies hete, too.

*(R_ -0.1)+R_, 10

GDL Reference Guide

483

Miscellaneous

Example:

GDL Reference Guide 484

Miscellaneous

wFrame=0.1: wDivider=0.025
72=A/2-SQR(2) *wFrame: Y=A/2-SQR(2) *wFrame-wDivider

ADDY A/2

WALLHOLE 4, 1,
0, -A/2, 15,
aA/2, O, 15,
0, A/2, 15,
-A/2, 0, 15

PRISM 10, 0.1,
0, -A/2, 15,
aA/2, O, 15,
0, A/2, 15,
-A/2, 0, 15,
0, -A/2, -1,
0, -7, 15,
Z, 0, 15,
0, z, 15,
-7, 0, 15,
o, - 27, -1

ADDZ 0.02

GOSUB "cross divider"

ADDZ 0.03

GOSUB "cross divider"

ADDY -7 -

SET MATERIAL "Glass-Blue"

ROTZ 45

RECT SQR(2)*Z, SQR(2)*Z

END

GDL Reference Guide 485

Miscellaneous

"cross_divider":

PRISM 16, 0.03,
0, -z, 15,
wDivider, -Y, 15,
wDivider, -wDivider, 15,
Y, -wDivider, 15,
Zz, 0, 15,
Z, wDivider, 15,
wDivider, wDivider, 15,
wDivider, Y, 15,
0, z, 15,
-wDivider, Y, 15,
-wDivider, wDivider, 15,
-Y, wDhivider, 15,
-z, 0, 15,
-Y, -wDivider, 15,
-wDivider, -wDivider, 15,
-wDivider, -Y, 15

RETURN

2D Related Challenges

Cutting custom wall opening

Placing a doot/window cuts a rectangular hole into the wall by default. The size of this hole in 2D is determined by the A parametets of the
doot/window library part. Implementing custom teveals ot cavity closutes requites cutting custom shaped holes in the wall or extending it
a bit in the floor plan view.

A correct solution for this issue can be achieved by using the WALLHOLE2, WALLBLOCK2, WALLLINE2 and WALLARC2 commands.

WALLHOLE2

WALLHOLE2 n, fill control, fill pen, fill background pen,
fillOrigoX, fillOrigoY, fillAngle,
x1l, yl, si,

xn, yn, sn
Wall opening definition for the plan view coupled with a cover polygon. Only the cut part of the wall is affected, view wall polygons stay intact.
The cover polygon has no contour.

GDL Reference Guide 486

Miscellaneous

This command can be used in the 2D sctipt of doot/window objects only.
The parameterization of the command is mainly the same as the one of the POLY2_B{2} command.

fill control:
fill control = 2*j, + 8*jy + 16*js + 32*%jg + 64*]7, where eachjcan be 0 or 1.
j2: draw cover fill on the polygon,
J4: local fill orientation,
Js: local fill should align with the wall direction (fill origin is at the wall origin and directions are matching),
Je: fillis cut fill (default is drafting fill),
j7: fillis cover fill (only if j6 = 0, default is drafting fill).

WALLHOLE2{2}

WALLHOLE2{2} n, frame fill, fillcategory, distortion flags,
fill pen, fill background pen,
fillOrigoX, fillOrigoY,
mxx, WXy, mMyx, mMyy,
innerRadius,
x1l, vyl, s1,

Xn, yn, sn
Advanced version of WALLHOLE2, where fill distortion can be controlled in an enhanced way.
It is equivalent to the POLY2_B{5} command in the geometric definition.
distortion flags:
distortion flags = Jj; + 2*jo + 4*j3 + 8*j4 + 16*Js5 + 32*jg + 64*j7 + 128*jg, whereeachjcanbeOor 1.
The valid value for distortion_flags is between 0 and 255. Don’t use value out of this range.
j1—J7: similar to the POLY2_B{5} command,
Jjg: local fill should align with the wall direction (fill origin is at the wall origin and directions are matching), meaningful only when j4 is
set. Distortion matrix (mij parameters) are omitted.

GDL Reference Guide 487

Miscellaneous

Extending the wall polygon

WALLBLOCK2

WALLBLOCK2 n, fill control, fill pen, fill background pen,
fi11lO0rigoX, fillOrigoY, fillAngle,
x1l, vy1l, s1i,

xn, yn, sn
WALLBLOCK2{2}

WALLBLOCK2{2} n, frame fill, fillcategory, distortion flags,
fill pen, f£ill background pen,
fillOrigoX, fillOrigoY,
mxx, WMxy, MyX, MyYy,
innerRadius,
x1l, yl, si,

Xn, yn, sn
Wall polygon (extension) definition for the plan view. Both the cut and view wall polygons are cut by the defined polygon. Wall openings

defined via WALLHOLE2 in another window/door object cut the polygon generated by this command, while wallholes coming from the
same object don’t.

This command can be used in the 2D sctipt of doot/window objects only.

The parameterization of the command is exactly the same as the ones of WALLHOLEZ2.

WALLLINE2

WALLLINE2 x1, yl, x2, y2

Wall line (extension) definition between two points for the plan view. Wall openings defined via WALLHOLE2 in another window/doot object
cut the line generated by this command, while wallholes coming from the same object don’t.

This command can be used in the 2D sctipt of doot/window objects only.

The parameterization of the command is exactly the same as the one of the LINE2 command.

WALLARC2

WALLARC2 x, y, r, alpha, beta

An arc with its centerpoint at (x, y) from the angle alpha to beta, with a radius of r, which is drawn by the containing wall. Wall openings defined
via WALLHOLE2 in another window/door object cut the arc generated by this command, while wallholes coming from the same object don’t.

GDL Reference Guide 488

Miscellaneous

This command can be used in the 2D sctipt of doot/window objects only.

The parameterization of the command is exactly the same as the one of the ARC2 command.

GDL CREATED FROM THE FLOOR PLAN

Saving the floor plan as a GDL script or library part will result GDL elements. You can use these GDL scripts as templates for your custom

library parts.
KEYWORDS

Common Keywords

FILE DEPENDENCE

MOD

AND

OR

EXOR

FOR

TO

STEP

NEXT

DO (at DO - WHILE, at WHILE - ENDWHILE)
WHILE (at DO - WHILE, at WHILE - ENDWHILE)
ENDWHILE

REPEAT

UNTIL

IF (at IF - GOTO, at IF - THEN - ELSE - ENDIF)
THEN (at IF - GOTO, at IF - THEN - ELSE - ENDIF)

GOTO (at IF - GOTO, at GOTO)
GOSUB (at IF - GOTO, at GOSUB)
ELSE

ENDIF

RETURN

GDL Reference Guide

489

Miscellaneous

END
EXIT
BREAKPOINT

FILLTYPES MASK (at DEFINE FILL, at DEFINE FILLA, at DEFINE SYMBOL FILL, at DEFINE
SOLID FILL, at DEFINE EMPTY FILL, at DEFINE LINEAR GRADIENT FILL, at DEFINE
RADIAL GRADIENT FILL, at DEFINE TRANSLUCENT FILL, at DEFINE IMAGE FILL, at VALUES)

DIM

PUT

GET

USE

NSP

CALL

RETURNED PARAMETERS

DEFAULT

PRINT

VARDIM1
VARDIMZ2
PARVALUE DESCRIPTION
ABS

CEIL

INT

FRA
ROUND_INT
SGN

SOR

ACS

ASN

ATN

COS

SIN

TAN

GDL Reference Guide 490

Miscellaneous

PI

EXP

LGT

LOG

NOT

MIN

MAX

RND

BITTEST

BITSET

REQ

REQUEST

IND
APPLICATION QUERY
LIBRARYGLOBAL
STR

STR{2}

SPLIT

STW

STRLEN

STRSTR

STRSUB
STRTOUPPER
STRTOLOWER
OPEN

INPUT

VARTYPE

OUTPUT

CLOSE
INITADDONSCOPE
PREPAREFUNCTION
CALLFUNCTION
CLOSEADDONSCOPE

GDL Reference Guide 491

Miscellaneous

Reserved Keywords

The keywords listed below are reserved; they exist for compatibility reasons or are not publicized.

BAS

BOX

CONT
FILTER
GDLBIN
HIP ROOFS
LIN

LINE
MIGRATIONWARNING
NOD

NODE
ORIGO
PARS
PAUSE
PLOTMAKER
PLOTTER
RECT

REF
SFLINE
TET

TETRA

TRI

WALL
VOCA

UI OK

UI CANCEL

3D Use Only

ADDX
ADDY
ADDZ
ADD

MULX
MULY

GDL Reference Guide 492

Miscellaneous

MULZ
MUL
ROTX
ROTY
ROTZ
ROT
XFORM

BLOCK
BRICK
CYLIND
SPHERE
ELLIPS
CONE
PRISM
PRISM
CPRISM
CPRISM {2}
CPRISM {3}
CPRISM {4}
BPRISM
FPRISM
HPRISM
SPRISM
SPRISM {2}
SPRISM {3}
SPRISM {4}
SLAB
SLAB
CSLAB_
CWALL
BWALL
XWALL

GDL Reference Guide 493

Miscellaneous

XWALL {2}
XWALL_ {3}
BEAM

CROOF _

CROOF_ {2}
CROOF_ {3}
CROOF {4}
MESH

ARMC

ARME

ELBOW

EXTRUDE
PYRAMID
REVOLVE
REVOLVE {2}
REVOLVE {3}
REVOLVE {4}
REVOLVE {5}
RULED
RULED{2}
SWEEP

TUBE

TUBEA

COONS

MASS

MASS {2}
POLYROOF
POLYROOF {2}
POLYROOF { 3}
POLYROOF { 4}
EXTRUDEDSHELL
EXTRUDEDSHELL {2}
EXTRUDEDSHELL{ 3}

GDL Reference Guide 494

Miscellaneous

REVOLVEDSHELL
REVOLVEDSHELL{ 2}
REVOLVEDSHELL{ 3}
REVOLVEDSHELLANGULAR
REVOLVEDSHELLANGULAR{ 2}
REVOLVEDSHELLANGULAR{ 3}
RULEDSHELL
RULEDSHELL{ 2}
RULEDSHELL{ 3}

TEXT

BODY

BASE

NURBSCURVEZ2D
NURBSCURVE3D
NURBSSURFACE
NURBSVERT

NURBSEDGE

NURBSTRIM
NURBSTRIMSINGULAR
NURBSFACE

NURBSLUMP

NURBSBODY

POINTCLOUD

CUTPLANE

CUTEND (at CUTPLANE, at CUTPLANE{2}, at CUTPLANE{3}, at CUTPOLY, at CUTPOLYA, at CUTSHAPE)
CUTPLANE{ 2}
CUTPLANE{3}

CUTPOLY

CUTPOLYA

CUTSHAPE

CUTFORM

CUTFORM{ 2}

GROUP

GDL Reference Guide 495

Miscellaneous

ENDGROUP
ADDGROUP
ADDGROUP{2}
ADDGROUP{ 3}
SUBGROUP
SUBGROUP ({2}
SUBGROUP {3}
ISECTGROUP
ISECTGROUP{2}
ISECTGROUP{3}
ISECTLINES
PLACEGROUP
KILLGROUP
SWEEPGROUP
SWEEPGROUP ({2}
SWEEPGROUP {3}
SWEEPGROUP {4}
CREATEGROUPWITHMATERIAL
BINARY
WALLNICHE

HOTSPOT
HOTLINE
HOTARC
LIN
RECT
POLY
POLY
PLANE
PLANE _
CIRCLE
ARC
LIGHT

GDL Reference Guide 496

Miscellaneous

PICTURE
RICHTEXT

VERT (at VERT, at VERT{2})
TEVE

VECT

EDGE

PGON

PGON ({2}

PGON ({3}

PIPG

COOR

COOR{2}

COOR{3}

MODEL

WIRE

SURFACE

SOLID

MATERIAL

SECT FILL

SECT ATTRS

SHADOW

ON

OFF

AUTO

DEFINE MATERIAL (at DEFINE MATERIAL, at DEFINE MATERIAL BASED ON)
BASED ON

DEFINE TEXTURE

WALLHOLE

2D Use Only

ADD2
MUL2

GDL Reference Guide 497

Miscellaneous

ROT2

LINE2

RECT2

POLY?2
POLY2
POLY2 A
POLY2 B
POLY2 B{2}
POLY2 B{3}
POLY2 B{4}
POLY2 B{5}
ARC2
CIRCLE2
SPLINE2
SPLINE2A
TEXT2
RICHTEXT2
FRAGMENT2
PROJECT?
PROJECT2 {2}
PROJECT2 {3}
PROJECT2 {4}
DRAWING2
DRAWING3
DRAWING3{2}
DRAWING3{3}
WALLHOLE2
WALLHOLE2 {2}
WALLBLOCK2
WALLBLOCK2 {2}
WALLLINE2

GDL Reference Guide 498

Miscellaneous

WALLARC2

HOTSPOT?2
HOTLINE2

HOTARC2

PICTURE2
PICTURE2{2}
LINE PROPERTY
DRAWINDEX

FILL

LINE TYPE

DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE

FILL

FILLA

SYMBOL FILL

SOLID FILL

EMPTY FILL

LINEAR GRADIENT FILL
RADIAL GRADIENT FILL
TRANSLUCENT FILL
IMAGE FILL

LINE TYPE

SYMBOL LINE

2D and 3D Use

DEL (at DEL, at DEL TOP)

TOP
NTR

ADDITIONAL DATA (at LIGHT,

LET
RADIUS
RESOL
TOLER
PEN

at DEFINE MATERIAL BASED ON)

GDL Reference Guide

499

Miscellaneous

SET (at [SET] STYLE, at [SET] MATERIAL, at [SET] FILL, at [SET] LINE TYPE)
STYLE

DEFINE STYLE

DEFINE STYLE{2}

PARAGRAPH

ENDPARAGRAPH

TEXTBLOCK

TEXTBLOCK _

Non-Geometric Scripts

Properties Script
DATABASE_ SET
DESCRIPTOR
REF DESCRIPTOR
COMPONENT
REF COMPONENT
BINARYPROP
SURFACE3D
VOLUME3D
POSITION
WALLS
COLUMNS
BEAMS
DOORS
WINDOWS
OBJECTS
CEILS
PITCHED_ROOFS
LIGHTS
HATCHES
ROOMS

GDL Reference Guide 500

Miscellaneous

MESHES
DRAWING

Parameter Script

VALUES

CUSTOM (at VALUES, at UI INFIELD{4})
RANGE

VALUES {2}

PARAMETERS (at PARAMETERS, at CALL)

LOCK

ALL (at LOCK, at HIDEPARAMETER, at CALL)
HIDEPARAMETER

Interface Script
UI_DIALOG
UI_PAGE
UI_CURRENT_PAGE
UI_BUTTON (at UI_BUTTON, at UI_TOOLTIP)
UI_PREV
UI_NEXT
UI_FUNCTION
UI_LINK
UI_PICT BUTTON (at UI_PICT BUTTON, at UI_TOOLTIP)
UI_SEPARATOR
UI_GROUPBOX
UI_PICT (at UI_PICT, at UI_TOOLTIP)
UI_STYLE
UI_OUTFIELD (at UI_OUTFIELD, at UI_TOOLTIP)
UI_INFIELD (at UI_INFIELD, at UI_TOOLTIP)
UI_INFIELD{2} (at UI_INFIELD{2}, at UI_TOOLTIP)
UI_INFIELD{3} (at UI_INFIELD{3}, at UI_TOOLTIP)
UI_INFIELD{4} (at UI_INFIELD{4}, at UI_TOOLTIP)
UI_CUSTOM POPUP INFIELD (at UI_CUSTOM POPUP_INFIELD, at UI_TOOLTIP)

GDL Reference Guide 501

Miscellaneous

UI_CUSTOM POPUP_INFIELD{2} (at UI_CUSTOM POPUP_ INFIELD{2}, at UI_TOOLTIP)
UI_RADIOBUTTON (at UI_RADIOBUTTON, at UI_TOOLTIP)

UI_RADIOBUTTON({2}

UI_LISTFIELD (at UI_LISTFIELD, at UI_TOOLTIP)

UI LISTITEM (at UI_LISTITEM, at UI_TOOLTIP)

UI LISTITEM{2} (at UI_LISTITEM{2}, at UI_TOOLTIP)
UI_CUSTOM POPUP LISTITEM (at UI_CUSTOM POPUP_LISTITEM, at UI_TOOLTIP)
UI_CUSTOM POPUP LISTITEM{2} (at UI_CUSTOM POPUP LISTITEM{2}, at UI_ TOOLTIP)
UI_TOOLTIP

UI_COLORPICKER

UI_COLORPICKER{2}

UI_SLIDER

UI SLIDER{2}

Forward and Backward Migration Scripts

SETMIGRATIONGUID
STORED PAR VALUE
DELETED PAR VALUE
NEWPARAMETER

GDL DATA I/O ADD-ON

The GDL Data In/Out Add-On allows you to access a simple kind of database by using GDL commands. Otherwise this Add-On is similar
to the GDL Text In/Out Add-On.

Description of Database

The database is a text file in which the records are stored in separate lines. The database can be queried and modified based on a single key.
The key and the other items are separated by a character (specified in the OPEN command).

The length of the lines does not need to be the same and even the number of columns in the records may be different.

If a database is open for writing then there should be enough space beside the database file for duplicating the whole file.

Opening and closing a database may be time consuming, so consecutive closing and opening of a database should be avoided.

Large databases (with more than some hundred thousand records) should be ordered by the key values.

GDL Reference Guide 502

Miscellaneous

A database can be opened, queried, modified and closed by this Add-On using the OPEN, INPUT, OUTPUT and CLOSE GDL commands.

Opening a Database
channel = OPEN (filter, filename, paramstring)

Opens the database. If the database file is to be opened for modification and the file does not exist, it creates a new file. If the database file is
to be opened for reading and the file does not exist, an error message is displayed.

Its return value is a positive integer that will identify the specific database. This value will be the database’s future reference number.
If the database is opened before open command, it will generate a channel number only.
filter: theinternal name of the Add-On, in this case "DATA"
filename: the name of the database file to be opened
paramstring: add-on specific parameter, contains separator characters and file opening mode parameters
The paramstring may contain the following:

SEPARATOR: after the keyword between single quotation matks (") you can define a character that you want to use in your text file (both
in case of writing and reading) for the separation of data fields. A special case is the tabulator character (\t').

MODE: after the keyword the mode of opening has to follow. There are three modes of opening:

* RO (read only)

* WA (tead, append/modify)

* WO (overwrite) Empties the database if exists.

DIALOG: the 'filename' parameter is working as a file-identifier, otherwise it is a full-path-name. The file-identifier is a simple string, which
will be matched to an existing file by the Add-On during a standard 'Open/Save as' dialog. This matching is stored by the Add-On and it
won't ask again except when the file is not available any more. If the open mode is read only, the Add-On will put up an Open dialog to
select an existing document. Otherwise the Add-On put up an alert-dialog to select between the 'Create’ and 'Browse' options:

* Create: create a new data-file (Save as Dialog).

* Browse: search an existing data-file (Open dialog)

LIBRARY: Ifthe LIBRARY keyword is present in the parameter string, the data file has to be in the loaded library. Opening data file from
the loaded library for reading is possible from all scripts, but writing is only enabled in the parameter, user interface and property scripts.

Always put a comma (;) between the components of paramstring,

If you use keywords that don’t exist, if the separator characters given are wrong or if there is nothing in the parameter string, the extension
will use the default settings: "SEPARATOR = '\t', MODE = RO"

GDL Reference Guide 503

Miscellaneous

Example:

chl = OPEN ("DATA", "filel",
"SEPARATOR=';', MODE = RO, DIALOG")
ch2 = OPEN ("DATA", "file2", "")
ch3 = OPEN ("DATA", "newfile",
"SEPARATOR = '\t', MODE = WA")

Reading Values from Database

INPUT (channel, recordID, fieldID, wvarl [, var2, ...])

Queries the database based on the key value.

If it finds the record, it reads items from the record starting from the given column and puts the read values into the parameters in sequence.
In the parameter list there has to be at least one value. The values can be of numeric or string type independently of the parameter type defined
for them. The return value is the number of successfully read values.

If there are more parameters than values, the parameters without corresponding values will be set to zero. In case of empty columns (i.e. if
there is nothing between the separator characters) the parameters will be set to zero.

If it finds no record it returns (-1).

channel: channel value, used to identify the connection.

recordID: key value (numeric or string).

fieldID: the column number in the given record (the smallest number, 1 refers to the item after the key value).

vari: variables to receive the read record items.

Excample:

! input of three values from the first column of the first row
nr = INPUT (chl, "keyl", 1, vl, v2, v3)

PRINT nr, vl, v2, v3

Writing Values into Database

OUTPUT channel, recordID, fieldID, exprl [, expr2, ...]

In case of record creation or modification, it sets the record belonging to the given key value. The record will contain the given values in the
same sequence as they appear in the command. The values can be of numetic or string type. There has to be at least one expression.

In case of deletion the record belonging to the given key value is removed from the database. The expression values are ignored, however at
least one should be specified.

GDL Reference Guide 504

Miscellaneous

Modifying data files loaded with the library is only enabled in the parameter, user interface and property scripts.
recordID: key value (numeric or string)
fieldID: flag: specify O (or <= 0) to delete a record, specify 1 (or > 0) to create or modify a record

expri: new item values of the found or new record in case of deletion these values are ignored

Example:

string = "Date: 19.01.1996"

a=1.5

OUTPUT ch2, "keyA", 1, "New record"

OUTPUT ch2, "keyA", 1, "Modified record"
OUTPUT ch2, "keyA", 0, 0 ! deletes the record
OUTPUT ch2, "keyB", 1, a, string

Closing Database

CLOSE channel

channel: channel value

Closes the database identified by the channel value.

GDL DATETIME ADD-ON

The DateTime extension allows you to set vatious formats for the current date and time set on your computer.

The Add-On works the same way the GDL file operations. You have to open a channel, read the information and close the channel.

This Add-On is also available by using the REQUEST GDL command, in which case the sequence of commands OPEN, INPUT and CLOSE
is called internally. This is the simplest way to obtain the date/time information, with just a single GDL command line:

REQUEST ("DateTime", format, datetimestring)

The second parameter of the Request function is the same as that described in the OPEN function paramstring parameter.

Opening Channel

channel = OPEN (filter, filename, paramstring)

Its return value is a positive integer that will identify the opened channel. This value will become the channel’s future reference number. The
paramstring can contain specifiers and other characters.

filter: theinternal name of the Add-On, in this case "DateTime"

filename: unused (there is no need to open any file to get the system date and time)

GDL Reference Guide 505

Miscellaneous

paramstring: add-on specific parameter, contains the desired output format of the date and time

The specifiers are replaced with date and time values as follows:

%y year without century, as a decimal number (00-99)

%Y year with century, as a decimal number

%b abbreviated month name

%B full month name

%m month, as a decimal number (01-12)

%d day of the month as a decimal number (01-31)

%H hour (24-hour clock), as a decimal number (00-23)

%l hour (12-hour clock), as a decimal number (01-12)

%M minute, as a decimal number (00-59)

%S second, as a decimal number (00-59)

%P AM/PM designation for a 12-hour clock

Y%c date and time in the form: 01:35:56 PM Wednesday, March 27, 1996

Y%x date in the form Wednesday, March 27, 1996

%X time in the form 01:35:56 PM

%oa abbreviated weekday name

%A full weekday name

Yow weekday, as a decimal number (0 (Sunday)-6 (Saturday))

%) day of the year, as a decimal number (001-360)

%U week number of the year (with Sunday as the first day of the first week), as a decimal number

%W week number of the year (with Monday as the first day of the first week), as a decimal number (00-53)
%7Z. GDL ignores this specifier. According to the standard, it prints the time zone if it can be determined
%% the % character

GDL Reference Guide 506

Miscellaneous

Example:

dstr = ""

ch = OPEN ("DateTime", "", "%w/%m/%d/%Y, %H:%M%P")
n = INPUT (ch, "", "", dstr)

CLOSE (ch)

PRINT dstr !it prints 3/03/27/1996, 14:36 PM

Reading Information

n = INPUT (channel, "", "", datetimestr)

It reads a string type value which represents the date and/or time in the format given at the OPEN sequence. The second and third parameters
are unused (they can be empty strings or 0-s as well)

The return value is the number of successfully read values, in this case 1.
channel: channel value, used to identify the connection.

datetimestr: string type value

Closing Channel
CLOSE channel
Closes the channel identified by the channel value.

GDL FiLE MANAGER I/O ApD-ON

The GDL File Managet In-Out Add-On allows you to scan a folder for the contained files/subfolders from a GDL script.
Specify the folder you would like to scan by using the OPEN command.

Get the first/next file/folder name in the specified folder by using the INPUT command.

Finish folder scanning by using the CLOSE command.

Specifying Folder

channel = OPEN (filter, filename, paramstring)

channel: folderid

filter: theinternal name of the Add-On, in this case "FileMan"

filename: the name of folder to be scanned (OS dependent path) - folder id string (in DIALOG mode - see later)

paramstring: Add-on specific parameter. The parameters in paramString must be separated by commas (,).

GDL Reference Guide 507

Miscellaneous

1. parameter: FILES/FOLDERS: Whatwould you like to search for?

2. parameter (optional): DIALOG: Indicates that the folder is given by a file id string instead of a file path. When this is
the case, at the first time (and each time when the corresponding file path seems to be invalid) the user will be faced a dialog box to set the
id string - file path correspondence, which will be stored.

Excample: Opening the root directory of the C drive (on a PC) for file-scanning
folder = OPEN ("FileMan", "c:\", "FOLDERS")

Getting File/Folder Name

n = INPUT (channel, recordID, fieldID, wvarl [, var2, ...])
channel: folderid (returned by the OPEN command)

recordID: O (reserved for further development)

fieldID: O (reserved for future development)

varl, ...: variable(s) to receive the file/folder name(s)

n: the number of successfully filled variables

Excample: Fetching the next file name from the specified folder
n = INPUT (folder, 0, 0, fileName)
If it succeeds, n will be 1. If there are no more files/subfolders the variable n will be set to zero.

Finishing Folder Scanning
CLOSE (channel)
Closes the folder identified by the channel value.

Excample: Listing a single folder
topFolder = open ("FileMan", "MyFavouriteFolder", "files, dialog")
y =0
n = input (topFolder, 0, 0, fileName)
while n = 1 do
text2 0, y, fileName

y=v - 0.6
n = input (topFolder, 0, 0, fileName)
endwhile

close (topFolder)

GDL Reference Guide 508

Miscellaneous

This code segment (as the 2D script section of an object, for example) lists the files in the folder specified by the MyFavouriteFolder identifier.
At first usage, the user will have to assign an existing folder to this identifier. Later, MyFavouriteFolder id will represent that folder.

GDL TexTt I/0O ADD-ON

The GDL Text In/Out Add-On allows you to open external text files for reading/writing and to manipulate them by putting/getting values
from/to GDL sctipts.

This Add-On interprets the strings on the parameter list of the OPEN, INPUT, OUTPUT commands from the GDL script.

The created files are placed in a subfolder of the application data folder if it is given by a relative path. The folder can contain subfolders where
the extension will look for existing files. It can read and write TEXT type files.

Opening File

channel = OPEN (filter, filename, paramstring)

Opens the file. If the file into which you want to write doesn’t exist, it creates the file. If a file to be read doesn’t exist, an error message is displayed.
Its return value is a positive integer that will identify the specific file. This value will be the file’s future reference number.

filter: theinternal name of the Add-On, in this case "TEXT"

filename: the name of the file to be opened

paramstring: add-on specific parameter, contains separator characters and file opening mode parameters
The paramstring may contain the following:
SEPARATOR: after the keyword between apostrophes (') you can assign a character to use in the text file (for both writing and reading)
to sepatate columns. Special cases ate the tabulator ('\t') and the new row ('\n') characters.
MODE: the mode of opening has to follow this keyword. There are only three modes of opening:
* RO (read only)
* WA (write only, append at the end of the file)
* WO (write only, overwrite) the data previously stored in the file will be lost!
A file cannot be open for reading and writing at the same time.
DIALOG: If this keyword is present, a dialog box will appear in which you can enter a file name.
FULLPATH: If this keyword is present, the file name will be interpreted as a full path name.
LIBRARY: If this keyword is present, the data file must be in the loaded library. Opening data file from the loaded library for reading is
possible from all scripts, but writing is only enabled in the parameter, user interface and property scripts.

Always put a comma (;) between the keywords.

GDL Reference Guide 509

Miscellaneous

NEWLINE: definition of new line character(s). Possible values:
* CR (Carriage return, 0x0D)

* LF (Line feed, 0x0A)

e CRLF (Carriage return + Line feed, 0x0D0x0A)

For Windows-like line ends use "NEWLINE = CRLF"

If you use keywords that don’t exist, if the separator characters given are wrong or if there is nothing in the parameter string, the extension

will use the default settings: "SEPARATOR = '\t', MODE = RO, NEWLINE = LF"
Excample:
chl = OPEN ("TEXT", "filel", "SEPARATOR = ';', MODE = RO")
ch2 = OPEN ("TEXT", "file2", "")
ch3 = OPEN ("TEXT", "file3", "SEPARATOR = '\n', MODE = WO")
Reading Values

INPUT (channel, recordID, fieldID, wvarl [, var2, ...])

It reads as many values from the given starting position of the file identified by the channel value as many parameters are given. In the parameter
list there has to be at least one value. The function puts the read values into the parameters in sequence. The values can be of numeric or string
type independently of the parameter type defined for them.

The return value is the number of successfully read values, in case of end of file (-1).
Both the row and the column numbers have to be positive integers, otherwise you will get an error message.
If the row or column numbers are incorrect, the input will not be carried out. (n = 0)

If the row and the column can be identified, as many values shall be input from the given starting position as many parameters are given, or if
there are more parameters than values, the parameters without corresponding values will be set to zero.

In case of empty columns (i.e. if there is nothing between the separator characters) the parameters will be set to zero.
channel: channel value, used to identify the connection.

recordID: the row number (numeric or string)

fieldID: the column number in the given row

varl, ...: variables to receive the read record items

Excample:

nr = INPUT (chl, 1, 1, vl1, v2, v3) ! input of three values
! from the firstcolumn of the first row
PRINT nr, vl, v2, v3

GDL Reference Guide 510

Miscellaneous

Writing Values
OUTPUT channel, recordID, fieldID, exprl [, expr2, ...]

Outputs as many values into the file identified by the channel value from the given position as many expressions are defined. There has to be
at least one expression. The types of the output values are the same as those of the expressions.

In case of a text extension, the OUTPUT will either (depending on the mode of opening) overwrite the file or add to the end of the file the
given expressions to consecutive positions using between them the separator characters defined when opening the file. In this case, the given
position is not interpreted.

Modifying data files loaded with the library is only enabled in the parameter, user interface and property scripts.
channel: channel value
recordID: The recordID is used to direct the new rows in the output
If the recordID is positive, the output values will be followed by a new row, otherwise the last value will be followed by a separator character.
fieldID: no role, its value is not used

exprl: values to output

Excample:

string = "Date: 19.01.1996"

a=1.5

OUTPUT ch2, 1, 0, string ! string followed by a new row

OUTPUT ch2, 0, 0, a, a + 1, a + 2! separator character after a + 2 ! without new row
Closing File

CLOSE channel
Closes the text file identified by the channel value.

channel: channel value

Excample:

A GDL object that will simply copy the contents of the "f1" file both into the "f2" and the "f3" files, but will write all the values tabulated
in "f1" into a separate row in both "f2" and "f3".

GDL Reference Guide 511

Miscellaneous

chl = open ("TEXT", "f1", "mode = ro")
ch2 = open ("TEXT", "f2", "separator = '\n', mode = wo")
ch3 = open ("TEXT", "f3", "separator = '\n', mode = wo")
i=1
1:

n = input (chl, i, 1, wvarl, wvar2, var3, vard)

if n <> -1 then
output ch2,
output ch3,
i=1i+1
goto 1

else
goto "close all"

endif

=
~

0, varl, wvar2, var3, var4d
0, varl, var2, var3, varid

=
~

"close all":
close chl
close ch2
close ch3
end

PrOPERTY GDL ADD-ON

The purpose of this add-on is to make an ARCHICAD property database accessible from GDL scripts. You can open database tables and
query their contents, just like you would do it with SQL. You can query single records and multiple records (lists). Note that you cannot modify
the database, and you cannot append records to it.

For the detailed description of the property database please refer to the “ARCHICAD Calenlation Guide” in the Help mena.

Open property database
OPEN ("PROP", "database set name", "[database files]")

Return value: channel number

Opens a communication channel to the given database files. The content of the database files are read into memory for faster access. As long
as it is open modifications to the property database will not be accessible from this add-on. This is usually not a problem though.

database set name: an arbitrary name that will identify a set of database files in subsequent OPEN calls.

GDL Reference Guide 512

Miscellaneous

database files: alist of text files that are part of the property database. This parameter is optional, if you have previously assigned
database set name to the files you would like to read. The order of the files is fixed: key file,component file,descriptor
file,unit file. You dont need to give full paths, because ARCHICAD will look up these files for you in the active libraries. If you
use long filenames or names with spaces, put them between quotes (' or ").

Example 1:

channel = OPEN ("PROP", "sample",
"'AC 8 KEY.txt', 'AC 8 COMP.txt', 'AC 8 DESC.txt', 'AC 8 UNIT.txt'")

Opens a database that consists of the files above (those ate the files of the ARCHICAD Property database), and names it "sample". Note that
inside the third parameter you must use a different quotation character (you can use " and).

Example 2:

channel = OPEN ("PROP", "sample", "")

This command can be issued after explicitly opening the database files (like in example 1), but before closing it. This lets you use the explicit
command at one place in the Master_ GDL script, and use the shorter version later.

Close property database
CLOSE (channel number)
Return value: none

Closes the previously opened communication channel.

Input to property database
INPUT (channel number, "query type", "field list", variablel [, ...])
channel number: avalid communication channel number given by a previous OPEN command.

query type: specifies the query you would like to execute. The add-on understands the following keywords:
* Single-record queries:

* KEY, <keycode> - query the record from the key database where <keycode> is the value of the keycode attribute. Valid fields:
KEYCODE, KEYNAME

* UNIT, <unitcode> - query the record from the unit database where <unitcode> is the value of the unit code attribute. Valid fields:
UNITCODE, UNITNAME, UNITFORMATSTR

* COMP, <keycode>, <code> - query the record from the unit database where <keycode> is the key code attribute value, and <code>
is the component code attribute value. Valid fields: KEYCODE, KEYNAME, CODE, NAME, QUANTITY, QUANTITYSTR,
UNITCODE, UNITNAME, UNITFORMATSTR

GDL Reference Guide 513

Miscellaneous

* DESC, <keycode>, <code> - query the record from the unit database where <keycode> is the key code attribute value, and <code>
is the descriptor code attribute value. Valid fields: KEYCODE, KEYNAME, CODE, NAME, NUMOFLINES, FULLNAME

Listing queries:

* KEYLIST - list all records in the key database. Valid fields: KEYCODE, KEYNAME

e UNITLIST - list all records in the unit database. Valid fields: UNITCODE, UNITNAME, UNITFORMATSTR

¢ COMPLIST], <keycode>] - list all records in the component database, or if <keycode> is given, then only those records are listed whose
keycode equals <keycode>. Valid fields: KEYCODE, KEYNAME, CODE, NAME, QUANTITY, QUANTITYSTR, UNITCODE,
UNITNAME, UNITFORMATSTR

* DESCLIST], keycode] - list all records in the descriptor database, or if <keycode> is given, then only those records are listed whose
keycode equals <keycode>. Valid fields: KEYCODE, KEYNAME, CODE, NAME, NUMOFLINES, FULLNAME

¢ COMPDESCLIST], <keycode>] - list all records in the component and the descriptor database, or if <keycode> is given, then only those
records are listed whose keycode equals <keycode>. Valid fields: ISCOMP, KEYCODE, KEYNAME, CODE, NAME, QUANTITY,
QUANTITYSTR, UNITCODE, UNITNAME, UNITFORMATSTR, NUMOFLINES, FULLNAME

Use this query with care! If either field is not valid in a database (e.g. FULLNAME in the component database) it will be simply left
out from the resulting list (you should be aware of that)

field 1list: lists the database attributes whose values you would like to see in the output. If the output is a list, it will be sorted in the
order of the fields listed here.

The following fields can be used:

KEYCODE - key code attribute. Type: string. Usable in queries: KEY, COMP, DESC, KEYLIST, COMPLIST, DESCLIST,
COMPDESCLIST

KEYNAME - key name attribute. Type: string. Usable in queries: KEY, COMP, DESC, KEYLIST, COMPLIST, DESCLIST,
COMPDESCLIST.

UNITCODE - unit code attribute. Type: string. Usable in queries: UNIT, COMP, UNITLIST, COMPLIST, COMPDESCLIST
UNITNAME - unit name attribute. Type: string, Usable in queries: UNIT, COMP, UNITLIST, COMPLIST, COMPDESCLIST
UNITFORMATSTR - GDL format string of the unit. Type: string. Usable in queries: UNIT, COMP, UNITLIST, COMPLIST,
COMPDESCLIST.

CODE - component or descriptor code attribute (depends on the query). Type: string. Usable in queries: COMP, DESC, COMPLIST,
DESCLIST, COMPDESCLIST.

NAME - name of component or the first line of a descriptor record. Type: string. Usable in queries: COMP, DESC, COMPLIST,
DESCLIST, COMPDESCLIST.

QUANTITY - quantity of a component as a number (for calculations). Type: number. Usable in queries: COMP, COMPLIST,
COMPDESCLIST.

GDL Reference Guide 514

Miscellaneous

* QUANTITYSTR - quantity of a component in string format. Type: string. Usable in queries: COMP, COMPLIST, COMPDESCLIST.

* NUMOFLINES - number of lines in a descriptor record. Type: number. Usable in queries: DESC, DESCLIST.

e FULLNAME - the whole descriptor record. Type: string(s). Usable in queries: DESC, DESCLIST.

e ISCOMP - tells you whether the next record is a component or a descriptor. Type: number (1 if component, 0 if descriptor). Usable in
queries: COMPDESCLIST

variables: will hold the result of the query upon completion. You can list several variables if you know exactly how many you need (e.g:
with single queries) or you can specify a dynamic array. The records are listed sequentially.

Example 1:
INPUT (channel, "KEY, 001", "KEYNAME", keyname)
This is a simple query: the name of the key with "001" code is put into the keyname variable.

Example 2:

INPUT (channel, "DESC, 004, 10", "NUMOFLINES, FULLNAME", desc_ txt)

The descriptor record with keycode "004" and code "10" is processed, the number of lines of the description text and the text itself is put
into the desc_txt array. The result is:

desc_txt[1] = <numoflines> (number)

desc_txt[2] = <first row of description> (string)

desc_txt[<numoflines+1>] = <last row of description>

Example 3:

INPUT (channel, "COMPLIST", "NAME, KEYNAME, QUANTITY", comp list)

Create a component list, sort it by the name field, then by the keyname and finally by the quantity field and put it into the comp_list array.
The result is:

complist[1] = <namel> (string)
complist[2] = <keynamel> (string)
complist[3] = <quantity]> (number)
complist[4] = <name2> (string)

... etc.

GDL Reference Guide 515

Miscellaneous

Example 4:
INPUT (channel, "COMPDESCLIST, 005", "ISCOMP, KEYNAME, NAME, QUANTITY", x list)
Creates a common component and descriptor list, which means that records from both tables are listed where <keycode> is "005". The output is:

x_list[1] = 0 (number, 0 —> it is a descriptor)

x_list[2] = <namel> (string —> descriptors do not have <keyname> field, so it is left out)

x_list[3] = 0 (number, descriptors do not have quantity field)

x_list[(n*2)-1] = 1 (number —> there were n-1 descriptors listed, now the components come)

x_list[n*2] = <keyname_n> (string) ... etc.

Output to property database

This command is not implemented in this add-on, since property databases are read-only.

GDL XML EXTENSION

This extension allows reading, writing and editing XML files. It implements a subset of the Document Object Model (DOM) interface. XML
is a text file that uses tags to structure data into a hierarchical system, similar to HTML. An XML document can be modeled by a hierarchical
tree structure whose nodes contain the data of the document. The following node types are known by the extension:

Element: what is between a start-tag and an end-tag in the document, or for an empty-clement it can be an empty-clement tag. Elements have
a name, may have attributes, and usually but not necessarily have content. It means that element type nodes can have child nodes. Attributes
are held in an attribute list where each attribute has a different name and a text value.

Text: a character sequence. It cannot have child nodes.

Comment: text between the comment delimiters: <!-- the comment itself --> . In the text of the comment each "' character must be followed
by a character different from '-'. It also means that the following is illegal: <!-- comment ---> . Comment type nodes cannot have child nodes.
CDATASection: text between the CDATA section delimiters: <||[CDATA[the text itself |]> . In a CDATA section characters that have special
meaning in an XML document need not (and must not) be escaped. The only markup recognized is the closing "]]>". CData section nodes
cannot have child nodes.

Entity-reference: reference to a predefined entity. Such a node can have a read-only subtree and this subtree gives the value of the referenced
entity. During the parsing of the document it can be chosen that entity references are translated into text nodes.

On the top level it is obligatory to have exactly one element type node (the root), and there can be several comment type nodes, as well. The

document type node of the DOM interface is not available through the extension’s interface.

GDL Reference Guide 516

Miscellaneous

name value
Element name of the tag """ (empty string)
Text "Htext" the text content of the node
Comment "#comment" the text content of the node
CDATASection "#cdata-section" the text content of the node
Entity-reference name of the referenced entity """ (empty string)

For each node in the tree there is a name and a value string associated whose meanings depend on the type of the node:

Element: ELEM
Text: TXT
Comment: CMT
CDATA section: CDATA
Entity reference: EREF

The success or error code of an OPEN, INPUT or OUTPUT command can be retrieved by the GetLastError instruction of the INPUT
command.

Opening an XML Document
channel = OPEN (filter, filename, parameter string)
filter: file extension. This should be "XML'

filename: name and path of the file to open (or create), or an identifier name if the file is opened through a dialog box and the file’s
location is given by the user.

parameter string: asequence of character flags that determine the open-mode:
'r': open in read-only mode. In general only the INPUT command can be used.
'e': entity references are not translated into text nodes in the tree. Without this flag there are no entity-references in the document structure.
'v': wvalidity check is performed during reading in and writing out. If a DTD exists in the document, the document’s structure must agree
with it. Without this flag a well-structured but invalid document can be read in and written out without error message.
'n': create a new file. If the file exists, the open will fail. (After the OPEN the CreateDocument instruction must be the first to execute.)

GDL Reference Guide 517

Miscellaneous

'w': overwrite file with empty document if it exists. If it doesn’t exist, a new file will be created. (After the OPEN the CreateDocument
instruction must be the first to execute.)
'd': the file is obtained from the user in a dialog box. In later runs it will be associated with the identifier given in the filename parameter
of the OPEN command. (If the identifier is already associated to a file, the dialog box will not be opened to the user.)
"£': the filename parameter contains a full path.
"1': the file is in the loaded library parts. Opening data file from the loaded library for reading is possible from all scripts, but writing is
only enabled in the parameter, user interface and property scripts.

channel: used to identify the connection in subsequent I/O commands.

If you want to open an existing XML file for modification, then none of the 't', 'n" and 'w' flags must be set in the parameter string. Only one of

the 'd', 'f and ' flags should be set. If none of these flags is set then filename is considered to be a path relative to the uset’s documents folder.

Reading an XML Document
DOM is an object-oriented model that cannot be adapted to a BASIC-like language like GDL directly. To represent the nodes in the hierarchy

tree we define position descriptors. When we want to walk through the nodes of the tree, first we have to request a new position desctiptor
from the extension. Originally a new desctiptor points to the root element. The descriptor is in fact a 32 bit identification number whose value
has no interest for the GDL script. The position it refers to can be changed as we move from one node in the tree to another.
INPUT (ch, recordID, fieldID, wvarl, var2, ...)
ch: channel returned by the OPEN command.
recordID: instruction name plus parameters.
fieldID: usually a position descriptor.
varl, var2, ...: optionallist of variables receiving returned data.
INPUT instructions:
* GetLastError: retrieve the result of the last operation
recordID: "GetlLastError"
fieldID: ignored
return values:
varl: error code / ok

var2: the explanation text of error / ok
* NewPositionDesc: request for a new position descriptor

recordID: "NewPositionDesc"

GDL Reference Guide 518

Miscellaneous

fieldID: ignored

return value: varl: the new position descriptor (initially refers to the root)
* CopyPositionDesc: request for a new position descriptor whose starting node is taken from another descriptor.

recordID: "CopyPositionDesc"
fieldID: an existing position descriptor

return value: varl: the new position descriptor (initially refers to where the descriptor given in fieldID refers to)
* ReturnPositionDesc: when a position descriptor is no longer needed.

recordID: "ReturnPositionDesc"
fieldID: the position descriptor
varl: ignored

Call this instruction when a position descriptor received from the NewPositionDesc or CopyPositionDesc instructions is no longer used.
* MoveToNode: change the position of a descriptor. (and retrieve the data of the new node)

This instruction can be used for navigating in the tree hierarchy.
recordID: "MoveToNode searchmode nodename nodetype nodenumber">
fieldID: position descriptor

searchmode (or movemode): the nodename parameter must contain a path that determines an element or entity reference node in the xml
document.

To specify an exact path, the Path movemode should be used. After this movemode only the required path should be present.

The path is relative to the node given in fieldID. The delimiter is the ":' character (which is otherwise an accepted character in an element's
name so this doesn't work for all cases). The ".." string in the path means a step to the parent node. The starting node can be different from
an element or entity reference node, in which case the path must begin with '.." to step back. If there are several element nodes on the same
level with the same name then the first one is chosen.

For the following move-modes the rest of the parameters must not be present:
ToParent: moves to the parent of the node given in fieldID.

ToNextSibling: moves to the next node on the same level.

ToPrevSibling: moves to the previous node on the same level.

ToFirstChild: moves to the first descendant of the fieldID node.

ToLastChild: moves to the last descendant of the fieldID node.

The following are the search-modes for which the rest of the parameters may occur, but they have default values if not present:

GDL Reference Guide 519

Miscellaneous

FromNextSibling: searching starts from the next node on the same level and it moves forward.
FromPrevSibling: searching starts from the node before fieldID and it moves backward on the same level.
FromPFirstChild: searching starts from the first descendant of the fieldID node and moves forward.
FromIastChild: searching starts from the last descendant of the fieldID node and moves backward.

nodename: the searching considers those nodes only whose name or value matches nodename. The * and ? characters in nodename are
considered as wildcard characters. For element and entity reference type nodes the name is compared, while for text, comment and CDATA

section nodes the value is compared. Default value: *

nodetype: the searching considers those nodes only whose type is allowed by nodetype. The * means all types are allowed. Otherwise the
type keywords can be combined with the + character to form the nodetype (it must be one word without spaces, like TXT+CDATA.) The
default value is *

nodenumber: if there are several matching nodes, this gives the number of the searched node in the sequence of matching nodes. (Starts
from 1) Default value: 1

return values:
varl: name of the node
var2: value of the node

var3: type keyword of the node

Excample:
We want to move backwards on the same level to the 2nd node that is an element or an entity reference and whose name starts with K:

INPUT (ch, "MoveToNode FromPrevSibling K* ELEM+EREF 2", posDesc, name, val, type)
* GetNodeData: retrieve the data of a given node.

recordID: "GetNodeData"
fieldID: the position descriptor
return values:

varl: name of the node

var2: value of the node

var3: type keyword of the node
* NumberofChildNodes: gives the number of child nodes of a given node

recordID: "NumberofChildNodes nodetype nodename"

GDL Reference Guide 520

Miscellaneous

The following optional parameters can narrow the set of child nodes considered:
nodetype: allowed node types as defined in the MoveToNode instruction

nodename: allowed node names or values as defined in the MoveToNode instruction
fieldID: position descriptor

return values:

varl: number of child nodes
¢ NumberofAttributes: returns the number of attributes of an element node.

recordID: "NumberofAttributes attrname"

attrname: if present, it can narrow the set of attributes considered as only those attributes will be counted whose names (and not the values)
match attrname. In attrname the * and ? characters are considered wildcard characters.

fieldID: position descriptor (must refer to an element node)
return values:

varl: number of attributes
¢ GetAttribute: return the data of an attribute of an element node

recordID: "GetAttribute attrname attrnumber"

fieldID: position descriptor (must refer to an element node)

optional parameters:

attrname: give the name of the attribute. The * and ? are considered wildcard characters. Default value: *

attrnumber: If several attribute matches attrname, attrnumber chooses the attribute in the sequence of matching attributes. (Counting starts
from 1.) Default value: 1

return values:
varl: value of the attribute

var2: name of the attribute

* Validate: check the validity of the document.
The validity is not checked during a document modification instruction. It is checked during writing back the file to disk if the 'v' flag was set
in the open-mode string. A validity check can be forced any time by the Validate instruction, however it can consume considerable amount
of time and memory so it is not advisable to do so after every modification.

recordID: "Validate"
fieldID: ignored

GDL Reference Guide 521

Miscellaneous

varl: ignored

Modifying an XML Document
OUTPUT (ch, recordID, fieldID, wvarl,
ch: channel returned by the OPEN command.
recordID: instruction name plus parameters.
fieldID: usually a position descriptor.

varl, var2, ...: additional input data.
OUTPUT instructions:

Most of the OUTPUT instructions are invalid for files opened in read-only mode.

¢ CreateDocument:
recordID: "CreateDocument"
fieldID: ignored

varl: name of the document. This will be the tagname of the root element, as well.

var2,

CreateDocument is allowed only if the file was opened in new-file or overwrite mode. In these modes this instruction must be the first to

be executed in order to create the XML document.

* NewElement: insert a new element type node in the document

recordID: "NewElement insertpos"

fieldID: a position descriptor relative to which the new node is inserted

varl: name of the new element (element tag-name)

insertpos can be:

AsNextSibling: new element is inserted after the position given in fieldID

AsPrevSibling: new element is inserted before the position given in fieldID

AsFirstChild: new element is inserted as the first child of the node given in fieldID (which must be an element node)
AsLastChild: new element is inserted as the last child of the node given in fieldID (which must be an element node)

* NewText: insert a new text node in the document
recordID: "NewText insertpos"”
fieldID: position descriptor

varl: text to be inserted

GDL Reference Guide

522

Miscellaneous

See also the NewE lement.
¢ NewComment: insert a new comment node in the document

recordID: "NewComment insertpos"”
fieldID: position descriptor
varl: text of the comment to be inserted

See also the NewE lement.
¢ NewCDATASection: insert a new CDATA section node in the document

recordID: "NewCDATASection insertpos”
fieldID: position descriptor
varl: text of the CDATA section to be inserted

See also the NewElement.
* Copy: make a copy of a subtree of the document under some node

recordID: "Copy insertpos"”

fieldID: position descriptor relative to which the subtree is inserted
varl: position descriptor giving the node of the subtree to be copied
insertpos: same as in the NewElement

The copied subtree remains unchanged. Position descriptors pointing to some node in the copied subtree will point to the same node after
the copy.
* Move: replace some subtree in the document to some other location

recordID: "Move insertpos”

fieldID: position descriptor relative to which the subtree is inserted
varl: position descriptor giving the node of the subtree to be moved
insertpos: same as in the NewElement

The original subtree is deleted. Position descriptors pointing to some node in the moved subtree will point to the same node in the new
position of the subtree.
* Delete: delete a node and its subtree from the document

recordID: "Delete"
fieldID: position descriptor giving the node to delete

varl: ignored

GDL Reference Guide 523

Miscellaneous

All position descriptors pointing to some node in the deleted subtree become invalid.
* SetNodeValue: change the value of a node

recordID: "SetNodeValue"
fieldID: position descriptor, it must refer to either a text, a comment or a CDATA section type node

varl: new text value of the node
* SetAttribute: change an attribute of an element node or create a new one

recordID: "SetAttribute"

fieldID: position descriptor, it must refer to an element type node
varl: name of the attribute

var2: text value of the attribute

If the element already has an attribute with this name then its value is changed, otherwise a new attribute is added to the element's list of
attributes.
* RemoveAttribute: removes an attribute of an element node

recordID: "RemoveAttribute"
fieldID: position descriptor, it must refer to an element type node

varl: name of the attribute to remove
¢ Flush: write the current document back to file

recordID: "Flush"
fieldID: ignored
varl: ignored
If the file was opened in validate mode, then only a valid document is saved.
* ChangeFileName: associate another file with the current document
recordID: "ChangeFileName"
fieldID: new file path
varl: gives how fieldID should be interpreted. If varl is an empty string, fieldID contains a path relative to the user's documents folder.

'd" means the file's location is obtained from the user from a file dialog box (see open-mode flags in the section called “Opening an XML
Document”). 'l' means the file is taken from the loaded libraties. 'f' means fieldID contains a full path.

This instruction can be called even if the file was opened in read-only mode. In this case after the execution the document loses the read-
only attribute, so it can be modified and saved to the new file location.

GDL Reference Guide 524

Miscellaneous

Table 19. Error codes and messages

0 "Ok"

-1 "Add-on Initialization Failed"

-2 "Not Enough Memory"

-3 "Wrong Parameter String"

-4 "File Dialog Errot"

-5 "File Does Not Exist"

-6 "XML Parse Error"

-7 "File Operation Error"

-8 "File Already Exists"

-9 "This channel is not open"

-10 "Syntax Errot"

-11 "Open Error"

-12 "Invalid Position Descriptot”

-13 "Invalid Node Type for this Operation"

-14 "No Such Node Found"

-15 "Internal Errot"

-16 "Parameter Error"

-17 "No Such Attribute Found"

-18 "Invalid XML Document"

-19 "Unhandled Exception"
GDL Reference Guide 525

Miscellaneous

-20 "Read-Only Document”

-21 "CreateDocument Not Allowed"
-22 "Document Creation Failed"

-23 "Setting NodeValue Failed"

-24 "Move Not Allowed"

-25 "Delete Not Allowed"

-26 "SetAttribute Not Allowed"

-27 "Format File Errot"

-28 "Insertion (or Copy) Not Allowed"
-29 "Node Creation Failed"

-30 "Bad String"

-31 "Invalid Name"

POLYGON OPERATIONS EXTENSION

This add-on calculates result polygons based on the input polygons and the operation that is carried out on them.

Input polygons are identified by a name when passed to the add-on and ate stored in a previously defined container. Result polygons are
automatically named by the add-on and ate stored in a second, target container. Input and result polygons are thus stored in different containers.
Multiple polygons, possibly with an even greater number of contours, can be created by a single operation. These will be administered as
individual polygons in the target container. As a result, these polygons can be accessed in subsequent polygon operations. The principle is the
same as with the Solid Geometry Commands (see in the section called “Solid Geometry Commands”). Input polygons must be contiguous.
A polygon is defined by several contours, each of which is an uninterrupted sequence of connected vertices. The first contour is the outer
boundary. The subsequent contours must all be inside the first, they may not overlap, and they create cutouts of the first polygon.

Opening a channel
ch = INITADDONSCOPE ("PolyOperations ", "", "")
Opens a channel. The return value is the ID of the opened channel.

GDL Reference Guide 526

Miscellaneous

Polygon container management

PREPAREFUNCTION ch, "CreateContainer", "myContainer", ""

Creates a new polygon container.

PREPAREFUNCTION ch, "DeleteContainer", "myContainer", ""

Delete an existing polygon container.

PREPAREFUNCTION ch, "EmptyContainer", "myContainer", ""

Emptying an existing polygon container.

PREPAREFUNCTION ch, "SetSourceContainer", "mySourceContainer", ""

Set container as source container.

PREPAREFUNCTION ch, "SetDestinationContainer", "myDestinationContainer", ""

Set container as destination containet.

Polygon management

PREPAREFUNCTION ch, "Store", "polyl", nVertices, nContours,
vertArray, contourArray [, defaultInhEdgeInfo, inhEdgeInfosArray]

Stores the polygon "polyl" with the given parameters in the actual source container.
polyl: name of the stored polygon

nVertices: number of vertices

nContours: number of contours

vertArray: Array containing exactly nVertices items that describes all contours of the polygon. Two dimension array of (x, y, angle) records
where x, y, and angle is real value. The angle parameter is the view-angle (deflection) in case of arched edges. This is a signed value, reflecting
the orientation. Zero value means straight edge.

contourArray: An array which contains the index of the last vertex of the i-th contour. It must have exactly nContours items.

defaultInhEdgeInfo: One piece of inherited edge information. To the brand new edges (not created with split) in operations performed
later this information will be attached. With the aid of this you can easily trace the newly created edges after complex operations. (Optional)

inhEdgeInfosArray: Array containinginformation attached to edges. It must of contain exactly nVertices integer type items. If an edge
splits into more than one new edge in an operation, this information will be inherited without change to all new edges created. You can use
it for example to store the side angles of a roof. (Optional)

Remarks:

* Polygons can have holes and curved edges though these curved edges can be only circle-arcs.

GDL Reference Guide 527

Miscellaneous

* This polygon can link to additional data for every edge.

* The first vertex must be always repeated in the last for all contours. So in this representation, a triangle have four vertices, where the first
and the last vertex is identical.

* The first contour is the main contout, and it must contain the othets.

PREPAREFUNCTION ch, "Dispose", "polyl", "myContainer"

Deletes the polygon "polyl" from the container "myContainer".

Polygon operation settings

PREPAREFUNCTION ch, "HalfPlaneParams", "", ca, cb, cc

Set the half plane in 2D to be used in the "PolyCut" operation.

Defining inequality for the half plane: ca * x + c¢b * y > cc.

ca: Coefficient of x

cb: Coefficient of y

cc: Constant

PREPAREFUNCTION ch, "OffsetParams", "", itemIdx, offsetValue
Set the offset parameters used in "OffsetEdge" and "ResizeContout" operation.

itemIdx: Index of the edge to be translated (for "OffsetEdge" operation). Index of the resizable contour (for "ResizeContour" operation).

offsetValue: Distance of the translation. Negative and positive offset values make the edge move inside and outside, respectively. If the
offset is big, the neighboring vertices can be cut out.

Polygon operations

In the following polygon operations the "poly1" and "poly2" source polygons atre located in the source polygon container. The resulting polygons
are stored in the destination polygon container with an unique name started with "resPolygonID", where "ID" is a number.

dim resPolyIDArray][]
nPgon = CALLFUNCTION (ch, "polyl OP poly2", "", resPolyIDArray)

Executes the "OP" operation with "polyl" and "poly2" polygons and puts the new values into the given parameters. The return value is the
number of the generated polygons
OP: can be:
+: Polygon addition
Polygon subtraction
/:+ Polygon intersection

GDL Reference Guide 528

Miscellaneous

resPolyIDArray: Array of resulting polygon identifiers.
Copying a polygon from the source container to the destination container

dim resPolyIDArrayl(]
nPgon = CALLFUNCTION (ch, "CopyPolygon", "polyl", resPolyIDArray)

Regularizing a polygon - Making it geometrically valid.

dim resPolyIDArray|]
nPgon = CALLFUNCTION (ch, "Regularize", "polyl", resPolyIDArray)

A polygon is valid if

* Its first boundary contains all the others

* Is oriented correctly (the main contour is a positively oriented curve, the rest is oriented negatively)
* Has no self-intersections

¢ Its area is not zero

* Has no zero length edges

Intersecting the polygon with a halfplane.

The halfplane must be set with an "HalfPlaneParams" command. The result will be regularized.

dim resPolyIDArrayl]
nPgon = CALLFUNCTION (ch, "PolyCut", "polyl", resPolyIDArray)

Translating an edge of a polygon perpendicularly to its direction.
The edge index and translation offset must be set with an "OffsetParams" command. The result will be regularized.

dim resPolyIDArrayl(]
nPgon = CALLFUNCTION (ch, "OffsetEdge", "polyl", resPolyIDArray)

Enlarges or shrinks a contour of a polygon.

The contour index and translation offset must be set with an "OffsetParams" command. The result will be regularized.
gu

dim resPolyIDArray|]
nPgon = CALLFUNCTION (ch, "ResizeContour", "polyl", resPolyIDArray)

Get resulting polygons

Getting all polygon names from the actual source container.

dim resPolyIDArrayl]
nPgon = CALLFUNCTION (ch, "GetSourcePolygons", "", resPolyIDArray

Getting all polygon names from the actual destination container.

GDL Reference Guide

529

Miscellaneous

dim resPolyIDArrayl(]
nPgon = CALLFUNCTION (ch, "GetDestinationPolygons", "", resPolyIDArray)

Getting the resulting polygon vertices after any polygon operation call.
The polygon with name "polygonID" located in the destination polygon container.

dim resVertices][]
nVertices = CALLFUNCTION (ch, "GetVertices", polygonID, resVertices)

Getting the resulting polygon contour end indices after any polygon operation call.
The polygon with name "polygonID" located in the destination polygon container.

dim contArr[]
nContours = CALLFUNCTION (ch, "GetContourEnds", polygonID, contArr)

Getting the resulting polygon contour information after any polygon operation call.

dim inhEdgeInfosArr[]
nEdgeInfos = CALLFUNCTION (ch, "GetInhEdgeInfos", polygonID, inhEdgeInfosArr)

The polygon with name "polygonID" located in the destination polygon container.

Closing channel
CLOSEADDONSCOPE (ch)
Closes channel "ch". Deletes all of the stored polygons.

AUTOTEXT GUIDE

It’s not part of GDL itself. ARCHICAD will substitute all references to autotext fields in whatever GDL output it finds them. For example, if
you write <PROJECTSTATUS> in the parameter string of a text2 command, ARCHICAD will nicely replace it with the actual value. All this
is invisible to GDL — consequently the size and other attributes of the text are not measurable.

Project info keywords

PROJECTNAME
PROJECTNUMBER
PROJECTSTATUS
DATEOFISSUE
SITEFULLADDRESS

SITEADDRESS1
SITEADDRESS?2

GDL Reference Guide 530

Miscellaneous

SITEADDRESS3
SITECITY
SITESTATE

SITEPOSTCODE
SITECOUNTRY
KEYWORDS
NOTES
ARCHITECTNAME

ARCHITECTPOSITION
CADTECHNICIAN
ARCHITECTCOMPANY

ARCHITECTFULLADDRESS

ARCHITECTADDRESS1

ARCHITECTADDRESS?2
ARCHITECTADDRESS3
ARCHITECTCITY
ARCHITECTSTATE
ARCHITECTPOSTCODE

ARCHITECTCOUNTRY
ARCHITECTEMAIL
ARCHITECTPHONE
ARCHITECTFAX
ARCHITECTWEB

CLIENTNAME
CLIENTCOMPANY
CLIENTFULLADDRESS
CLIENTADDRESS1
CLIENTADDRESS?2

CLIENTADDRESS3
CLIENTCITY
CLIENTSTATE
CLIENTPOSTCODE
CLIENTCOUNTRY

GDL Reference Guide

531

Miscellaneous

CLIENTEMAIL
CLIENTPHONE
CLIENTFAX

General

SHORTDATE
LONGDATE
TIME
FILENAME
FILEPATH
LASTSAVEDAT
LASTSAVEDBY

Layout autotexts

LAYOUTNAME
LAYOUTID
SUBSETNAME
SUBSETID
LAYOUTNUMBER
NUMOFLAYOUTS

Drawing autotexts

DRAWINGNAME
DRAWINGID
DRAWINGSCALE
ORIGINALSCALE
MAGNIFICATION
RENOVATIONFILTER

GDL Reference Guide

532

Miscellaneous

Reference type autotexts

LAYOUTNAME R
LAYOUTID R
SUBSETNAME R
SUBSETID R
DRAWINGNAME R
DRAWINGID R
DRAWINGSCALE R
ORIGINALSCALE R
MAGNIFICATION R
FILENAME R
FILEPATH R
LAYOUTNUMBER R
RENOVATIONFILTER R

Marker type autotexts

MARKERSHEETNUMBER R
MARKERDRAWINGNUMBERﬁR
MARKERSHEETNUMBER90 R
MARKERDRAWINGNUMBER90 R
MARKERSHEETNUMBERlloiﬁ
MARKERDRAWINGNUMBER110 R
BACKREFSHEETNUMBER R N

Change related autotexts

CHANGEID
CHANGEDESCRIPTION
REVISIONID
ISSUEID
ISSUEDESCRIPTION
ISSUEDATE

GDL Reference Guide

533

Miscellaneous

ISSUEDBY

Layout revision related autotexts

CURRENTREVISIONID
CURRENTISSUEID
CURRENTISSUEDESCRIPTION
CURRENTISSUEDATE
CURRENTISSUEDBY

NEwW GDL FEATURES IN ARCHICAD 20

This section informs you about new GDL features in ARCHICAD 20. You can find the definition of the new and modified commands by
following the links.

Introducing NURBS

NURBS geometry compatible GDL commands
From ARCHICAD 20 GDL has the possibility to create and store exact NURBS geometries.

See the section called “NURBS Primitive Elements” for the new commands.

New versions of existing commands in relations with NURBS

* COOR({ 3} The coordinate system of the projection body is included in the COOR{3} command itself, no need to define additional vertexes
in the current BODY. Compatible with NURBS bodies (no non-NURBS primitives are needed to set up the texture coordinate system).

* PROJECT2{4} adds the possibility to define multiple cutting planes parallel to the X-Y plane, and to control the attributes of the cut and
projected parts of the slices, including the line type, pens and fills, within one command.

General new features

New Global Variables

See the section called “Global Variables” for details:

GDL Reference Guide 534

Miscellaneous

3

WALL_TEXTURE_WRAP: this array contains all data for correct texture alignment of wall-connected objects (wall ends, doors, windows).

Property related new features

New Request options (see the section called “REQUEST Options” for details):

REQUEST "Properties_Of_Parent": Returns the properties of the parent object. All properties are returned in one array with the following
form: ID, type, group, name. Can be used only in labels. Causes warning if used in parameter script.

REQUEST "Property_Value_Of_Parent": Returns value array of the selected property. Can be used only in labels. Causes warning if used
in parameter script.

REQUEST "Property_Name": Returns the type, group and name of the selected property. Can be used only in labels. Causes warning if
used in parameter script.

Commands for property visualization:

UI_CUSTOM POPUP_INFIELD
UI_CUSTOM POPUP_LISTITEM

Additional new REQUEST Options

REQUEST{3} "Sum_with_rounding": Returns the sum of the numbers in addends_array, with rounding according to the “Calculate Totals
by” project preference. This preference can be found in Project Preferences / Calculation Units and Rules.

REQUEST "AUTOTEXT_LIST": Returns one AUTOTEXT array of the autotexts used in the project with the following triplets [“ID”,
“Category”, Name”]. Causes warning if used in parameter script. Can be used only in UI script.

REQUEST "Configuration_number": Returns the configuration number of the current ARCHICAD license. Causes warning if used in
parameter script.

Additional new Fix Named Optional Parameters

The following parameters can be used to customize label frame and pointer connection:

ac_bDisableLabelFrameDisplay: enable/disable built-in rectangular frame display in connection with Pointer
ac_bCustomPointerConnection: set up custom connection points on a label head using special hotspots

Enhanced commands

UI RADIOBUTTON({2}: option for string expressions
UI INFIELD:new picture method 9
STR{2}: new format flag *7

GDL Reference Guide 535

Miscellaneous

Deprecated functions and commands
* COOR: the old versions will work, but COOR{3} is the new standard
* REQUEST "Constr_Fills_display": the returned value will always be 6 by default (Cut fill patterns: as in Settings).

Recommended updates of existing library parts

Restrictions of Global Variables and Requests used in Parameter Script

To ensure the stored parameter value consistency of a library part, and the validity of returned values in all views, contexts, and TeamWork
environment, the use of some Global Variables, Requests and Application Queries is not supported in the following environments, starting
from ARCHICAD 20:

* parameter script

* master script used as parameter script

* Master.gdl, Master.gsm, and Library Master objects

The occurence of such items in parameter script will cause GDL warnings, while the requests expressions will return zero (containing 0 or
empty string values as retuned parameters) and the global variables will contain a type matching default value only. To use returned values of
restricted requests as parameter value, use the UI_CUSTOM POPUP INFIELD or the UI_CUSTOM POPUP LISTITEM commands in
the User Interface Script.

For more detailed information, please consult:

* the section called “Global Variables” for a list of not supported globals

* the section called “REQUEST Options” for a list of not supported requests

* the section called “Application Query Options” for a list of not supported application queries

GDL Reference Guide 536

Index

INDEX

SYNTAX LISTING OF GDL COMMANDS

A

ABS (x)

ACS (x)

ADD dx, dy, dz

ADD2 x, y

ADDGROUP (g _exprl, g expr2)

ADDGROUP{2} (g _exprl, g expr2, edgeColor, materialld, materialColor [, operationStatus])
ADDGROUP{3} (g_exprl, g expr2, edgeColor, materialld, materialColor [, operationStatus])

LIGHT red, green, blue, shadow,
radius, alpha, beta, angle falloff,
distancel, distance?2,
distance_ falloff [[,] ADDITIONAL DATA namel = valuel,
name?2 = value2, ...]

DEFINE MATERIAL name [,] BASED ON orig name [,] PARAMETERS namel = exprl [, ...]
[[,] ADDITIONAL DATA namel = exprl [, ...]]

ADDX dx

ADDY dy

ADDZ dz

LOCK ALL ["namel" [, "name2", ..., "namen"]]
HIDEPARAMETER ALL ["namel" [, "name2", ..., "namen"]]

GDL Reference Guide 537

Index

CALL macro_name_string [,1]
PARAMETERS [ALL] [namel=valuel, ..., namen=valuen][[,]
RETURNED PARAMETERS rl, r2, ...]

APPLICATION QUERY (extension name, parameter string, variablel, variablez, ...)
ARC r, alpha, beta

ARC2 x, vy, r, alpha, beta

ARMC rl, r2, 1, h, d, alpha

ARME 1, rl, r2, h, d

ASN (x)

ATN (x)
B

BASE

DEFINE MATERIAL name [,] BASED ON orig name [,] PARAMETERS namel = exprl [, ...]
[[,] ADDITIONAL DATA namel = exprl [, ...]]

BEAM left material, right material, vertical material,
top material, bottom material,
height,
x1l, x2, x3, x4,
vl, v2, v3, v4, t,
maskl, mask2, mask3, mask4

BINARY mode [, section, elementID]
BINARYPROP

BITSET (x, b [, exprl])

BITTEST (x, b)

BLOCK a, b, c

GDL Reference Guide 538

Index

BODY status

BPRISM top material, bottom material, side material,
n, h, radius,
x1l, yl, si1,

Xn, yn, sn
BREAKPOINT expression

BRICK a, b, c

BWALL left material, right material, side material,
height, x1, x2, x3, x4, t, radius,
maskl, mask2, mask3, mask4,
n,
x_startl, y lowl, x endl, y highl, frame shownl,

x_startn, y lown, X endn, y highn, frame shownn,
m,
al, bl, cl, di,

am, bm, cm, dm

CALL macro_name_ string [,]
PARAMETERS [ALL] [namel=valuel, ..., namen=valuen][[,]
RETURNED PARAMETERS rl, r2, ...]

CALL macro name string [,]PARAMETERS
valuel or DEFAULT [, ..., valuen or DEFAULT]

CALL macro name string [, parameter list]

CALLFUNCTION (channel, function name, parameter, variablel [, variable2, ...])

GDL Reference Guide 539

Index

CEIL (x)

CIRCLE r

CIRCLEZ x, VY, T

CLOSE channel

CLOSEADDONSCOPE channel

COMPONENT name, quantity, unit [, proportional with, code, keycode, unitcode]
CONE h, rl, r2, alphal, alphaZ?

COONS n, m, mask,

x11, vy11, =z11, ..., xln, yln, zln,
x21, y21, z21, ..., %x2n, y2n, z2n,
x31, vy31, z31, ..., x3m, y3m, z3m,
x41, vy4l1, =z41, ..., x4m, y4m, z4m

COOR wrap, vertl, vert2, vert3, vertd
COOR{2} wrap method, wrap flags, vertl, vert2, vert3, verti4

COOR{3} wrapping method, wrap flags,
origin X, origin Y, origin 7,
endOfX X, endOfX Y, endOfX 7,
endOfY X, endOfY Y, endOfY 7,
endOfz X, endOfZ Y, endOfZ 7

COS (x)

CPRISM top material, bottom material, side material,
n, h,
x1l, yl, sl, ..., xn, yn, sn

CPRISM {2} top material, bottom material, side material,
I‘-ll hl
x1l, yl, alphal, sl, matl,

GDL Reference Guide 540

Index

xn, yn, alphan, matn

CPRISM {3} top material, bottom material,
n, h,
xl, yl,

sn,

alphal, sl, matl,

xn, yn, alphan, matn

CPRISM {4} top material, bottom material,
nl hl
x1l, vyi,

sn,

alphal, sl, matl,

xn, yn, alphan, matn

CREATEGROUPWITHMATERIAL

sn,
(g_expr,
CROOF_ top material, bottom material,

side material,

side material,

side material,

mask,

mask,

repl directive, pen, material)

n, xb, yb, xe, ye, height, angle, thickness,
x1l, yl, alphal, sl1,
xn, yn, alphan, sn
CROOF_ {2} top material, bottom material, side material,
n, xb, yb, xe, ye, height, angle, thickness,
x1l, yl, alphal, sl, matl,
xn, yn, alphan, sn, matn
CROOF {3} top material, bottom material, side material, mask,
n, xb, yb, xe, ye, height, angle, thickness,
x1, yl, alphal, sl, matl,
xn, yn, alphan, sn, matn
CROOF {4} top material, bottom material, side material, mask,
n, xb, yb, xe, ye, height, angle, thickness,
x1l, yl, alphal, sl, matl,
GDL Reference Guide 541

Index

xn, yn, alphan, sn, matn

CSLAB top material, bottom material, side material,
n, h,
x1l, y1, z1, sl, ..., xn, yn, zn, sn

CUTPLANE [x [, v [, z [, side [, status]lll]]

[statementl ... statementn]
CUTEND
CUTPLANE{2} angle [, status]
[statementl ... statementn]
CUTEND
CUTPLANE{3} [x [, v [, z [, side [, status]l]1]
[statementl ... statementn]
CUTEND
CUTPOLY n,
x1l, yl, ..., xn, yn
[I XI yl Z]
[statementl
statement?2
statementn]
CUTEND
CUTPOLYA n, status, d,
x1l, yl, maskl, ..., xn, yn, maskn [,
X, V, 2]
[statementl
statement?2
statementn]

CUTEND

GDL Reference Guide 542

Index

CUTSHAPE d [, status]
[statementl statement2 ... statementn]
CUTEND

CUTFORM n, method, status,
rx, ry, rz, d,
x1l, yl, maskl [, matl],

xn, yn, maskn [, matn]

CUTFORM{2} n, method, status,
rx, ry, rz, d,
x1l, yl, maskl [, matl],

xn, yn, maskn [, matn]

CUTPLANE [x [, v [, z [, side [, status]lll]]

[statementl ... statementn]
CUTEND
CUTPLANE{2} angle [, status]
[statementl ... statementn]
CUTEND
CUTPLANE{3} [x [, v [, z [, side [, status]]]1]1]
[statementl ... statementn]
CUTEND
CUTPOLY n,
x1l, yvl, ..., xn, yn
[, x, v, 2]
[statementl
statement?2
statementn]
CUTEND

GDL Reference Guide 543

Index

CUTPOLYA n, status, d,

x1l, yl, maskl, ..., xn, yn, maskn [,
X, Y, 2]

[statementl

statement?2

statementn]

CUTEND

CUTSHAPE d [, status]

[statementl statement?2 ... statementn]

CUTEND

CWALL 1left material, right material, side material,
height, x1, x2, x3, x4, t,
maskl, mask?2, mask3, mask4,
n,
x _startl, y lowl, x endl, y highl, frame shownl,

x_startn, y lown, x endn, y highn, frame shownn,
ml
al, bl, c1, di,

am, bm, cm, dm

CYLIND h, r

DATABASE SET set name [, descriptor name, component name, unit name, key name,
criteria name, list set name]

CALL macro_name_string [,]PARAMETERS
valuel or DEFAULT [, ..., valuen or DEFAULT]

GDL Reference Guide 544

Index

CALL macro name string [,] PARAMETERS
valuel or DEFAULT [, ., valuen or DEFAULT]

DEFINE EMPTY FILL name [[,] FILLTYPES MASK fill types]

DEFINE FILL name [[,] FILLTYPES MASK fill_types,]
patternl, pattern2, pattern3, patterni,
patternb5, pattern6, pattern’, pattern§,
spacing, angle, n,
frequencyl, directionl, offset x1, offset yl, ml,
lengthll, ..., lengthlm,

frequencyn, directionn, offset xn,
lengthnl, ..., lengthnm

DEFINE FILLA name [,] [FILLTYPES MASK fill types,]
patternl, pattern2, pattern3, patterni,
pattern5, pattern6, pattern7, pattern8,
spacing x, spacing y, angle, n,
frequencyl, directional offsetl, directionl,
offset x1, offset yl, ml,
lengthll, ..., lengthlm,

frequencyn, directional offsetn, directionn,
offset xn, offset yn, mn,
lengthnl, ..., lengthnm

DEFINE IMAGE FILL name image name [[,] FILLTYPES MASK fill types]
partl, part2, part3, partd, parth, part6, part7, part8§,
image vert size, image hor size, image mask, image rotangle

DEFINE LINEAR GRADIENT FILL name [[,] FILLTYPES MASK fill types]

DEFINE LINE TYPE name spacing, n,
lengthl, ..., lengthn

GDL Reference Guide 545

Index

DEFINE

DEFINE

DEFINE
DEFINE
DEFINE
DEFINE
DEFINE

DEFINE

DEFINE
DEFINE

DEL n

DEL TOP

MATERIAL name type,
surface red, surface green, surface blue
[, ambient ce, diffuse ce, specular ce, transparent ce,
shining, transparency attenuation
[, specular red, specular green, specular blue,
emission red, emission green, emission blue, emission att]]
[, fill index [, fillcolor index, texture index]]

MATERIAL name [,] BASED ON orig name [,] PARAMETERS namel = exprl [,
[[,] ADDITIONAL DATA namel = exprl [, ...]]

RADIAL GRADIENT FILL name [[,] FILLTYPES MASK fill types]
SOLID FILL name [[,] FILLTYPES MASK fill types]

STYLE name font family, size, anchor, face code

STYLE{2} name font family, size, face_ code

SYMBOL FILL name [,][FILLTYPES MASK fill_types,]

patl, pat2, pat3, pat4, patb, pat6, pat7, pats§,

spacingxl, spacingyl, spacingx2, spacingy2,

angle, scalingl, scaling2, macro name [,] PARAMETERS [namel
= valuel, ..., namen = valuen]

SYMBOL LINE name dash, gap, macro name PARAMETERS [namel = valuel,

namen = valuen]
TEXTURE name expression, x, y, mask, angle

TRANSLUCENT FILL name [[,] FILLTYPES MASK fill types]
patl, pat2, pat3, patd4, patb, pat6, pat7, pat8,
percentage

[, begin with]

DELETED PAR VALUE ("oldparname", outputvalue)

GDL Reference Guide

546

Index

DESCRIPTOR name [, code, keycode]

DIM varl[dim 1], var2[dim 1] [dim 2], var3[1],
vard[][1, var5[dim 1][],
var5[1 [dim 2]

DO [statmentl
statement?2

statementn]
WHILE condition

WHILE condition DO
[statementl
statement?2

statementn]
ENDWHILE
DRAWINDEX number
DRAWING
DRAWING2 [expression]
DRAWING3 projection code, angle, method

DRAWING3{2} projection code, angle, method [, backgroundColor,
fillOrigoX, fillOrigoY, filldirection]

DRAWING3{3} projection code, angle, method, parts [, backgroundColor,
fillOrigoX, £illOrigoY, filldirection][[,]
PARAMETERS namel=valuel, ..., namen=valuen]

EDGE vertl, vert2, pgonl, pgon2, status
ELBOW rl, alpha, r2

GDL Reference Guide 547

Index

ELLIPS h, r

IF condition THEN statement [ELSE statement]
IF condition THEN

[statementl
statement?2
statementn]

[ELSE
statementn+1
statementn+2
statementn+m]

ENDIF

END ([v1, Vv2, ..., vn]

GROUP "name"
[statementl ... statementn]

ENDGROUP

IF condition THEN
[statementl
statement?2
statementn]

[ELSE
statementn+l
statementn+2
statementn+m]

ENDIF

PARAGRAPH name alignment, firstline indent,
left indent, right indent, line spacing [,

GDL Reference Guide 548

Index

tab positionl, ...]
PEN index]
[SET] STYLE stylel]
[SET] MATERIAL index]
stringl'
'string2’

[
[
[

'string n'

[PEN index]

[[SET] STYLE styleZ2]
[[SET] MATERIAL index]
'stringl’

'string2’

'string n'
ENDPARAGRAPH

WHILE condition DO
[statementl
statement?2

statementn]
ENDWHILE
EXIT [v1l, v2, ..., vn]
EXP (x)
EXTRUDE n, dx, dy, dz, mask,
x1l, vyl, sl1,
Xn, yn, sn

EXTRUDEDSHELL topMat, bottomMat, sideMat 1, sideMat 2, sideMat 3, sideMat 4,

GDL Reference Guide 549

Index

defaultMat,

n, offset, thickness, flipped, trimmingBody,

X tb, y tb, x te, y te, topz, tangle,

X bb, y bb, x be, y be, bottomz, bangle,

preThickenTran 11, preThickenTran 12, preThickenTran 13, preThickenTran 14,

preThickenTran 21, preThickenTran 22, preThickenTran 23, preThickenTran 24,

preThicakenTran 31, preThickenTran 32, preThickenTran 33, preThickenTran 34,

x1l, y1, s 1,

X n, yn, s n
EXTRUDEDSHELL{2} topMat, bottomMat, sideMat 1, sideMat 2, sideMat 3, sideMat 4,

defaultMat,

n, status, offset, thickness, flipped, trimmingBody,

x tb, y tb, x te, y te, topz, tangle,

x bb, y bb, x be, y be, bottomz, bangle,

preThickenTran 11, preThickenTran 12, preThickenTran 13, preThickenTran 14,

preThickenTran 21, preThickenTran 22, preThickenTran 23, preThickenTran 24,

preThicakenTran 31, preThickenTran 32, preThickenTran 33, preThickenTran 34,

x1l, yv1, s 1,

X n, yn, sn
EXTRUDEDSHELL{3} topMat, bottomMat, sideMat 1, sideMat 2, sideMat 3, sideMat 4,

defaultMat,

n, status, offset, thickness, flipped, trimmingBody,

x tb, y tb, x te, y te, topz, tangle,

x bb, y bb, x be, y be, bottomz, bangle,

preThickenTran 11, preThickenTran 12, preThickenTran 13, preThickenTran 14,

preThickenTran 21, preThickenTran 22, preThickenTran 23, preThickenTran 24,

preThicakenTran 31, preThickenTran 32, preThickenTran 33, preThickenTran 34,

x1l, v 1, s 1,

X n, yn, sn

GDL Reference Guide 550

Index

F

FILE DEPENDENCE "namel" [, "name2", ...]

[SET] FILL name string

[SET] FILL index

DEFINE FILL name [[,] FILLTYPES MASK fill_types,]
patternl, pattern2, pattern3, patterni,
pattern5, pattern6, pattern’, patterns,
spacing, angle, n,
frequencyl, directionl, offset x1, offset yl, ml,
lengthll, ..., lengthlm,
frequencyn, directionn, offset xn,
lengthnl, ..., lengthnm

DEFINE FILLA name [,] [FILLTYPES MASK fill_types,]
patternl, pattern2, pattern3, patterni,
pattern5, pattern6, pattern’, patterns,
spacing x, spacing y, angle, n,
frequencyl, directional offsetl, directionl,
offset x1, offset yl, ml,
lengthll, ..., lengthlm,
frequencyn, directional offsetn, directionn,
offset xn, offset yn, mn,
lengthnl, ..., lengthnm

DEFINE SYMBOL FILL name [,][FILLTYPES MASK fill_types,]
patl, pat2, pat3, pat4, patb, pat6, pat7, pats§,
spacingxl, spacingyl, spacingx2, spacingy2,
angle, scalingl, scaling2, macro name [,] PARAMETERS [namel
= valuel, ..., namen = valuen]

GDL Reference Guide

551

Index

DEFINE SOLID FILL name [[,] FILLTYPES MASK fill types]
DEFINE EMPTY FILL name [[,] FILLTYPES MASK fill types]
DEFINE LINEAR GRADIENT FILL name [[,] FILLTYPES MASK fill types]
DEFINE RADIAL GRADIENT FILL name [[,] FILLTYPES MASK fill types]

DEFINE TRANSLUCENT FILL name [[,] FILLTYPES MASK fill types]
patl, pat2, pat3, pat4, patb, pat6, pat7, pats§,
percentage

DEFINE IMAGE FILL name image name [[,] FILLTYPES MASK fill types]
partl, part2, part3, partd4d, parth, part6, part7, part8§,
image vert size, image hor size, image mask, image rotangle

VALUES "fill parameter name" [[,] FILLTYPES MASK fill types,] value definitionl
[, value definition2, ...]

FOR variable name = initial value TO end value [STEP step value] NEXT variable name
FPRISM top material, bottom material, side material, hill material,
n, thickness, angle, hill height,
x1l, yl, s1,
Xn, yn, sn
FRA (x)
FRAGMENTZ2 fragment index, use current attributes flag
FRAGMENTZ2 ALL, use_current attributes flag

GET (n)

IF condition THEN label
IF condition GOTO label
IF condition GOSUB label

GDL Reference Guide 552

Index

GOSUB label

IF condition THEN label
IF condition GOTO label
IF condition GOSUB label

GOTO label
GROUP "name"
[statementl ... statementn]
ENDGROUP
H
HIDEPARAMETER "namel" [, "name2", ..., "namen"]
HIDEPARAMETER ALL ["namel" [, "name2", ..., "namen"]]

HOTARC r, alpha, beta, unID

HOTARC2 x, vy, r, startangle, endangle, unID

HOTLINE x1, vyl, zl1l, x2, y2, z2, unlD

HOTLINE2 x1, vyl1, x2, y2, unlD

HOTSPOT %, y, z [, unID [, paramReference [, flags [, displayParam [, customDescription]]]]]

HOTSPOT2 X, y [, unID [, paramReference [, flags [, displayParam [,
"customDescription™]]111]

HPRISM top mat, bottom mat, side mat,
hill mat,
n, thickness, angle, hill height, status,
x1l, yl, si,

Xn, yn, sn

GDL Reference Guide 553

Index

IF
IF
IF

IF
IF
IF

IF
IF
IF

IF
IF

[EL

END
IND
IND
IND
IND
IND

INITADDONSCOPE

condition
condition
condition

condition
condition
condition

condition
condition
condition

condition

condition

THEN label
GOTO label
GOSUB label

THEN label
GOTO label
GOSUB label

THEN label
GOTO 1label
GOSUB label

THEN statement [ELSE statement]
THEN

[statementl
statement?2

statementn]

SE

statementn+l
statementn+2

statementn+m]

IF

(MATERIAL, name string)

(FILL, name string)

(LINE_TYPE, name_ string)

(STYLE, name_string)

(TEXTURE,

name_string)

(extension, parameter stringl, parameter string2)

GDL Reference Guide

554

Index

INPUT (channel, recordID, fieldID, variablel [, variable2, ...])

INT (x)

ISECTGROUP (g exprl, g expr2)

ISECTGROUP{2} (g _exprl, g expr2, edgeColor, materialld, materialColor [, operationStatus])
ISECTGROUP{3} (g _exprl, g expr2, edgeColor, materialld, materialColor [, operationStatus])

ISECTLINES (g _exprl, g _expr2)

K
KILLGROUP g expr
L
[LET] varnam = n
LGT (x)

LIBRARYGLOBAL (object name, parameter, value)

LIGHT red, green, blue, shadow,
radius, alpha, beta, angle falloff,
distancel, distance2,
distance_ falloff [[,] ADDITIONAL DATA namel = valuel,
name?2 = value2, ...]

LINE2 x1, vy1, x2, y2

LINE PROPERTY expr

[SET] LINE TYPE name string
[SET] LINE TYPE index

LIN x1, yl, zl, x2, y2, z2

LOCK "namel" [, "name2", ..., "namen"]

GDL Reference Guide 555

Index

LOCK ALL ["namel" [, "name2", ., "namen"]]

LOG (x)

M

MASS top material, bottom material, side material,
n, m, mask, h,
x1l, y1, z1, s1,

Xn, yn, zn, sn,
xn+l, yn+l, zn+l, sn+l,

Xn+m, yn+m, zn+m, sn+m

MASS{2} top material, bottom material, side material,
n, m, mask, h,
x1l, yl, z1, s1,

xn, yn, zn, sn,
xn+l, yn+l, zn+l, sn+l,

Xn+m, yn+m, zn+m, sn+m
[SET] MATERIAL name_ string
[SET] MATERIAL index
MAX (x1, x2, ., Xn)

MESH a, b, m, n, mask,

z11, z12, ., zlm,
z21, z22, ., z2m,
znl, zn2, ., znm

MIN (x1, x2, ., Xn)

GDL Reference Guide 556

Index

MODEL WIRE
MODEL SURFACE
MODEL SOLID
MUL mx, my, mz
MUL2 x, y
MULX mx

MULY my

MULZ mz

NEWPARAMETER "name", "type" [, diml [, dim2]]

FOR variable name = initial value TO end value [STEP step value] NEXT variable name
NOT (x)

NSP

NTR ()

NURBSBODY shadowStatus, smoothnessMin, smoothnessMax

NURBSCURVE2D degree, nControlPoints,

knot 1, knot 2, ..., knot m,

cPoint 1 x, cPoint 1 y, weight 1,

cPoint 2 x, cPoint 2 y, weight 2,

A4

cPoint n x, cPoint n y, weight n
NURBSCURVE3D degree, nControlPoints,

knot 1, knot 2, ..., knot m,

cPoint 1 x, cPoint 1 y, cPoint 1 z, weight 1,

cbPoint 2 x, cPoint 2 y, cPoint 2 z, weight 2,

GDL Reference Guide 557

Index

-7

cPoint n x, cPoint n y, cPoint n z, weight n
NURBSEDGE vertl, vert2, curve, curveDomainBeg, curveDomainEnd, status, tolerance

NURBSFACE n, surface, tolerance,
triml, trim2, ..., trimn
NURBSLUMP n, facel, face2, ..., facen
NURBSSURFACE degree u, degree v, nu, nv,
knot u 1, knot u 2, ..., knot u mu,
knot v 1, knot v 2, ..., knot v mv,
cbPoint 1 1 x, cPoint 1 1 y, cPoint 1 1 z, weight 1 1,
cbPoint 1 2 x, cbPoint 1 2 y, cPoint 1 2 z, weight 1 2,
-7
cPoint 1 nv _x, cPoint 1 nv y, cPoint 1 nv z, weight 1 nv,
cbPoint 2 1 x, cbPoint 2 1 y, cPoint 2 1 z, weight 2 1,
.
cPoint nu nv x, cPoint nu nv_y, cPoint nu nv_z, weight nu nv
NURBSTRIM edge, curve, curveDomainBeg, curveDomainEnd, tolerance
NURBSTRIMSINGULAR vertex, curve, curveDomainBeg, curveDomainEnd, tolerance

NURBSVERT x, vy, z, hard, tolerance

OPEN (filter, filename, parameter string)

OUTPUT channel, recordID, fieldID, expressionl [, expression2, ...]

PARAGRAPH name alignment, firstline indent,
left indent, right indent, line spacing [,
tab positionl, ...]

GDL Reference Guide 558

Index

[PEN index]

[[SET] STYLE stylel]
[[SET] MATERIAL index]
'stringl’

'string2’

'string n'

[PEN index]

[[SET] STYLE styleZ2]
[[SET] MATERIAL index]
'stringl’

'string2’

'string n'

ENDPARAGRAPH

PARAMETERS namel = expressionl [,
name2 = expression2, ...,
namen = expressionn]

CALL macro_name_ string [,]
PARAMETERS [ALL] [namel=valuel, ..., namen=valuen][[,]
RETURNED PARAMETERS rl, r2, ...]

CALL macro_name_ string [,]PARAMETERS
valuel or DEFAULT [, ..., valuen or DEFAULT]

PARVALUE DESCRIPTION (parname [, indl [, ind2]])

PEN n
PGON n, vect, status, edgel, edge2, ..., edgen
PGON{2} n, vect, status, wrap, edge or wrapl, ..., edge or wrapn

GDL Reference Guide 559

Index

PGON{3} n, vect, status, wrap method, wrap flags, edge or wrapl, ..., edge or wrapn
PI

PICTURE expression, a, b, mask

PICTURE2 expression, a, b, mask

PICTURE2{2} expression, a, b, mask

PIPG expression, a, b, mask, n, vect, status,
edgel, edge2, ..., edgen

PLACEGROUP g expr

PLANE n, x1, vy1, z1l, ..., xn, yn, zn

PLANE n, x1, yl1, z1, sl, ..., Xn, yn, zn, sn
POINTCLOUD "data file name"

POLY n, x1, vy1, ..., xn, yn
POLY2 n, frame fill, x1, yl, ..., xXn, yn
POLYZ2 n, frame fill, x1, yl1, sl, ..., xn, yn, sn

POLY2 A n, frame fill, fill pen,
xl, yl1, sl, ..., xn, yn, sn

POLY2 B n, frame fill,
fill pen, fill background pen,
xl, y1, sl, ..., xn, yn, sn

POLY2 B{2} n, frame fill,
fill pen, fill background pen,
fillOrigoX, £illOrigoY, fillAngle,
xl, yl, sl, ..., xn, yn, sn

POLY2 B{3} n, frame fill,

fill pen, fill background pen,
fillOrigoX, fillOrigoYy,

GDL Reference Guide 560

Index

mxx, mxy, myx, myy, x1, yl, sl, ..., xn, yn, sn

POLY2 B{4} n, frame fill,

fill pen, fill background pen,
fillOrigoX, £fillOrigoYy,

mxx, mxy, myx, myy,
gradientInnerRadius,

xl, yl1, sl, ..., xn, yn, sn

POLY2 B{5} n, frame fill,

fillcategory, distortion flags,

fill pen, fill background pen,
fillOrigoX, fillOrigoY,

mnxx, mxy, myx, myy,
gradientInnerRadius,

xl, yl1, sl, ..., xn, yn, sn

POLYROOF defaultMat, k, m,
offset, thickness,
z 1, ..., z k,

n,
applyContourInsidePivot,

pivotX 1, pivotY 1, pivotMask 1,
roofAngle 11, gableOverhang 11, topMat 11, bottomMat 11,

roofAngle 1k, gableOverhang 1k, topMat 1k, bottomMat 1k,

pivotX m, pivotY m, pivotMask m,
roofAngle ml, gableOverhang ml, topMat ml, bottomMat ml,

roofAngle mk, gableOverhang mk, topMat mk, bottomMat mk,

contourX 1, contourY 1,

contourX n, contourY n,

POLYROOF{2} defaultMat, k,
offset, thickness,
z 1, ..., z_ k,

m, n,
totalThickness, applyContourInsidePivot,

contourMask 1, edgeTrim 1, edgeAngle 1, edgeMat 1,

contourMask n, edgeTrim n, edgeAngle n, edgeMat n

GDL Reference Guide

561

Index

pivotX 1, pivotY 1, pivotMask 1,
roofAngle 11, gableOverhang 11, topMat 11, bottomMat 11,

roofAngle 1k, gableOverhang 1k, topMat 1k, bottomMat 1k,

pivotX m, pivotY m, pivotMask m,
roofAngle ml, gableOverhang ml, topMat ml, bottomMat ml,

roofAngle mk, gableOverhang mk, topMat mk, bottomMat mk,
contourX 1, contourY 1, contourMask 1, edgeTrim 1, edgeAngle 1, edgeMat 1,

contourX n, contourY n, contourMask n, edgeTrim n, edgeAngle n, edgeMat n

POLYROOF{3} defaultMat, mask, k, m, n,
offset, thickness, totalThickness, applyContourInsidePivot,
z 1, ..., z k,
pivotX 1, pivotY 1, pivotMask 1,
roofAngle 11, gableOverhang 11, topMat 11, bottomMat 11,

roofAngle 1k, gableOverhang 1k, topMat 1k, bottomMat 1k,

pivotX m, pivotY m, pivotMask m,
roofAngle ml, gableOverhang ml, topMat ml, bottomMat ml,

roofAngle mk, gableOverhang mk, topMat mk, bottomMat mk,
contourX 1, contourY 1, contourMask 1, edgeTrim 1, edgeAngle 1, edgeMat 1,

contourX n, contourY n, contourMask n, edgeTrim n, edgeAngle n, edgeMat n

POLYROOF {4} defaultMat, mask, k, m, n,
offset, thickness, totalThickness, applyContourInsidePivot,
z 1, ..., z k,
pivotX 1, pivotY 1, pivotMask 1,
roofAngle 11, gableOverhang 11, topMat 11, bottomMat 11,

GDL Reference Guide 562

Index

roofAngle 1k, gableOverhang 1k, topMat 1k, bottomMat 1k,

pivotX m, pivotY m, pivotMask m,
roofAngle ml, gableOverhang ml, topMat ml, bottomMat ml,

roofAngle mk, gableOverhang mk, topMat mk, bottomMat mk,
contourX 1, contourY 1, contourMask 1, edgeTrim 1, edgeAngle 1, edgeMat 1,

contourX n, contourY n, contourMask n, edgeTrim n, edgeAngle n, edgeMat n
POLY n, x1, yl, sl, ..., xn, yn, sn
POSITION position keyword
PREPAREFUNCTION channel, function name, expressionl [, expression2, ...]
PRINT expression [, expression, ...]
PRISM n, h, x1, y1l, ..., xn, yn
PRISM n, h, x1, yl, sl, ..., xn, yn, sn
PROJECT2 projection code, angle, method

PROJECT2{2} projection code, angle, method [, backgroundColor,
fillOrigoX, fillOrigoY, filldirection]

PROJECT2{3} projection code, angle, method, parts [, backgroundColor,
fillOrigoX, £illOrigoY, filldirection][[,]
PARAMETERS namel=valuel, ..., namen=valuen]

PROJECT2{4} projection code, angle,
useTransparency, statusParts,
numCutplanes,
cutplaneHeightl, ..., cutplaneHeightn,

methodl, partsl,

GDL Reference Guide 563

Index

cutFillIndexl1,

cutFillFgPenl, cutFillBgPenl,

cutFillOrigoX1l, cutFillOrigo¥Yl, cutFillDirectionl,
cutLinePenl, cutLineTypel,

projectedFillIndexl1,

projectedFillFgPenl, projectedFillBgPenl,
projectedFillOrigoX1l, projectedFillOrigoYl,
projectedFillDirectionl,

projectedLinePenl, projectedLineTypel,

method (numCutplanes+l)), parts(numCutplanes+l),

cutFillIndex (numCutplanes+l),

cutFillFgPen (numCutplanes+l), cutFillBgPen (numCutplanes+1l),
cutFillOrigoX (numCutplanes+1l), cutFillOrigoY (numCutplanes+l),
cutFillDirection (numCutplanes+l),

cutLinePen (numCutplanes+l), cutLineType (numCutplanes+l),
projectedFillIndex (numCutplanes+l),

projectedFillFgPen (numCutplanes+l), projectedFillBgPen (numCutplanes+l),
projectedFillOrigoX (numCutplanes+l), projectedFillOrigoY¥Y (numCutplanes+1),
projectedFillDirection (numCutplanes+1),

projectedLinePen (numCutplanes+l), projectedLineType (numCutplanes+1)

PUT expression [, expression, ...]

PYRAMID n, h, mask, x1, yl, sl, ..., xn, yn, sn

RADIUS radius min, radius_max

RECT a, b

RECT2 x1, vyl, x2, y2

REF COMPONENT code [, keycode [, numeric expression]]

GDL Reference Guide 564

Index

REF DESCRIPTOR code [, keycode]

REPEAT [statementl
statement?2

statementn]
UNTIL condition

REQ (parameter string)

REQUEST (question name, name | index, variablel [, variable2, ...])
RESOL n

RETURN

CALL macro_name_string [,1]
PARAMETERS [ALL] [namel=valuel, ..., namen=valuen][[,]
RETURNED PARAMETERS rl, r2, ...]

REVOLVE n, alpha, mask, x1, yl, sl, ..., xn, yn, sn

REVOLVEDSHELL topMat, bottomMat, sideMat 1, sideMat 2, sideMat 3, sideMat 4,
defaultMat,
n, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,
preThickenTran 11, preThickenTran 12, preThickenTran 13, preThickenTran 14,
preThickenTran 21, preThickenTran 22, preThickenTran 23, preThickenTran 24,
preThickenTran 31, preThickenTran 32, preThickenTran 33, preThickenTran 34,
x1l, v1, s 1,

X n, yn, sn

REVOLVEDSHELLANGULAR topMat, bottomMat,
sideMat 1, sideMat 2, sideMat 3, sideMat 4, defaultMat,
n, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,
segmentationType, nOfSegments,
preThickenTran 11, preThickenTran 12, preThickenTran 13,
preThickenTran 14,

GDL Reference Guide 565

Index

preThickenTran 21, preThickenTran 22, preThickenTran 23,
preThickenTran 24,

preThickenTran 31, preThickenTran 32, preThickenTran 33,
preThickenTran 34,

x1l, y1, s 1,

X n, yn, s n

REVOLVEDSHELLANGULAR{2} topMat, bottomMat,
sideMat 1, sideMat 2, sideMat 3, sideMat 4, defaultMat,
n, status, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,
segmentationType, nOfSegments,
preThickenTran 11, preThickenTran 12, preThickenTran 13,
preThickenTran 14,
preThickenTran 21, preThickenTran 22, preThickenTran 23,
preThickenTran 24,
preThickenTran 31, preThickenTran 32, preThickenTran 33,
preThickenTran 34,
x1l, yv1, s 1,

X n, yn, sn

REVOLVEDSHELLANGULAR{3} topMat, bottomMat,
sideMat 1, sideMat 2, sideMat 3, sideMat 4, defaultMat,
n, status, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,
segmentationType, nOfSegments,
preThickenTran 11, preThickenTran 12, preThickenTran 13,
preThickenTran 14,
preThickenTran 21, preThickenTran 22, preThickenTran 23,
preThickenTran 24,
preThickenTran 31, preThickenTran 32, preThickenTran 33,
preThickenTran 34,
x1l, v 1, s 1,

GDL Reference Guide 566

Index

X n, yn, s n

REVOLVEDSHELL{2} topMat, bottomMat,

defaultMat,
status, offset,
preThickenTran 11,
preThickenTran 21,
preThickenTran 31,
x1l, yv1, s 1,

n,

X n, yn, sn

REVOLVEDSHELL{3} topMat, bottomMat,

defaultMat,

status, offset,
preThickenTran 11,
preThickenTran 21,
preThickenTran 31,

n,

sideMat 1, sideMat 2, sideMat 3, sideMat 4,
thickness, flipped, trimmingBody, alphaOffset, alpha,
preThickenTran 12, preThickenTran 13, preThickenTran 14,
preThickenTran 22, preThickenTran 23, preThickenTran 24,

preThickenTran 32, preThickenTran 33, preThickenTran 34,

sideMat 1, sideMat 2, sideMat 3, sideMat 4,
thickness, flipped, trimmingBody, alphaOffset, alpha,
preThickenTran 12, preThickenTran 13, preThickenTran 14,
preThickenTran 22, preThickenTran 23, preThickenTran 24,

preThickenTran 32, preThickenTran 33, preThickenTran 34,

x1l, v 1, s 1,
X n, yn, sn

REVOLVE{2} n, alphaOffset, alpha, mask, sideMat,
x1l, yl, sl, matl, ., xXn, yn, sn, matn

REVOLVE{3} n, alphaOffset, alpha, betaOffset, beta, mask, sideMat,
x1l, yl, sl, matl, ., Xn, yn, sn, matn

REVOLVE{4} n, alphaOffset, alpha, betaOffset, beta, mask, sideMat,
x1l, yl, sl, matl, ., Xn, yn, sn, matn

REVOLVE{5}n, alphaOffset, alpha, betaOffset, beta, mask, sideMat,
x1l, yl, sl, matl, ., Xn, yn, sn, matn

RICHTEXT x, vV,
height, 0, textblock name

GDL Reference Guide 567

Index

RICHTEXT2 x, y, textblock name

RND (x)

ROT %, vy, z, alpha
ROT2 alpha

ROTX alphax

ROTY alphay

ROTZ alphaz

ROUND INT (x)

RULED n, mask,
ul, vl1l, sl1, ..., un,
xl, y1, z1, ..., xn,

RULEDSHELL topMat, bottomMat,
sideMat 1, sideMat 2,

n, m, g,

sn,
zZn

sideMat 3, sideMat 4, defaultMat,

offset, thickness, flipped, trimmingBody,

preThickenTran 11, preThickenTran 12, preThickenTran 13, preThickenTran 14,
preThickenTran 21, preThickenTran 22, preThickenTran 23, preThickenTran 24,
preThickenTran 31, preThickenTran 32, preThickenTran 33, preThickenTran 34,

firstpolyX 1, firstpolyY 1, firstpolyS 1,

firstpolyX n, firstpolyY n, firstpolyS n,
secondpolyX 1, secondpolyY 1, secondpolyS 1,

secondpolyX m, secondpolyY m, secondpolyS m,

profile2Tran 11, profile2Tran 12, profile2Tran 13, profile2Tran 14
profile2Tran 21, profile2Tran 22, profile2Tran 23, profile2Tran 24
profile2Tran 31, profile2Tran 32, profile2Tran 33, profile2Tran 34
generatrixFirstIndex 1, generatrixSecondIndex 1,

GDL Reference Guide

568

Index

generatrixFirstIndex g, generatrixSecondIndex g

RULEDSHELL{2} topMat, bottomMat,

sideMat 1, sideMat 2, sideMat 3, sideMat 4, defaultMat,

n, m, g, status,

offset, thickness, flipped, trimmingBody,

preThickenTran 11, preThickenTran 12, preThickenTran 13, preThickenTran 14,
preThickenTran 21, preThickenTran 22, preThickenTran 23, preThickenTran 24,
preThickenTran 31, preThickenTran 32, preThickenTran 33, preThickenTran 34,
firstpolyX 1, firstpolyY 1, firstpolysS 1,

firstpolyX n, firstpolyY n, firstpolyS n,
secondpolyX 1, secondpolyY 1, secondpolyS 1,

secondpolyX m, secondpolyY m, secondpolyS m,

profile2Tran 11, profile2Tran 12, profile2Tran 13, profile2Tran 14
profile2Tran 21, profile2Tran 22, profile2Tran 23, profile2Tran 24
profile2Tran 31, profile2Tran 32, profile2Tran 33, profile2Tran 34
generatrixFirstIndex 1, generatrixSecondIndex 1,

generatrixFirstIndex g, generatrixSecondIndex g

RULEDSHELL{3} topMat, bottomMat,

sideMat 1, sideMat 2, sideMat 3, sideMat 4, defaultMat,

n, m, g, status,

offset, thickness, flipped, trimmingBody,

preThickenTran 11, preThickenTran 12, preThickenTran 13, preThickenTran 14,
preThickenTran 21, preThickenTran 22, preThickenTran 23, preThickenTran 24,
preThickenTran 31, preThickenTran 32, preThickenTran 33, preThickenTran 34,
firstpolyX 1, firstpolyY 1, firstpolyS 1,

firstpolyX n, firstpolyY n, firstpolyS n,
secondpolyX 1, secondpolyY 1, secondpolyS 1,

GDL Reference Guide 569

Index

secondpolyX m, secondpolyY m, secondpolyS m,

profile2Tran 11, profile2Tran 12, profile2Tran 13, profile2Tran 14
profile2Tran 21, profile2Tran 22, profile2Tran 23, profile2Tran 24
profile2Tran 31, profile2Tran 32, profile2Tran 33, profile2Tran 34
generatrixFirstIndex 1, generatrixSecondIndex 1,

generatrixFirstIndex g, generatrixSecondIndex g

RULED{2} n, mask,
ul, v1l, sl1, ..., un, vn, sn,
xl, y1, z1, ..., xn, yn, zn

SECT ATTRS fill, fill background pen,
fill pen, contour pen [, line type]

SECT FILL fill, fill background pen,
fill pen, contour pen

[SET] STYLE name string
[SET] STYLE index

[SET] MATERIAL name_ string
[SET] MATERIAL index

[SET] FILL name string
[SET] FILL index

[SET] LINE TYPE name string
[SET] LINE TYPE index
SETMIGRATIONGUID guid

SGN (x)

SHADOW casting [, catching]

GDL Reference Guide 570

Index

SIN (x)
SLAB n, h, x1, vyl1, z1, ..., xn, yn, zn
SLAB n, h, x1, yl1, zl1, sl, ..., xn, yn, zn, sn

MODEL SOLID
SPHERE r
SPLINE2 n, status, x1, yl,
anglel, ..., xn, yn, anglen

SPLINEZ2A n, status, x1, yl, anglel, length previousl, length nextl,

xn, yn, anglen, length previousn,
length nextn

SPLIT (string, format, variablel [, variable2, ..., variablen])

SPRISM top material, bottom material, side material,
n, xb, yb, xe, ye, h, angle,
x1l, yl, s1,

Xn, yn, sn

SPRISM {2} top material, bottom material, side material,
n,
xtb, ytb, xte, yte, topz, tangle,
xbb, ybb, xbe, ybe, bottomz, bangle,
x1l, yl, sl, matl,

xn, yn, sn, matn

SPRISM {3} top material, bottom material, side material, mask,
n,
xtb, ytb, xte, yte, topz, tangle,
xbb, ybb, xbe, ybe, bottomz, bangle,

GDL Reference Guide 571

Index

x1l, yl, sl, matl,

xn, yn, sn, matn
SPRISM {4} top material, bottom material, side material, mask,
I‘_ll
xtb, ytb, xte, yte, topz, tangle,
xbb, ybb, xbe, ybe, bottomz, bangle,
x1l, yl, sl, matl,

Xn, yn, sn, matn

SOR (x)

FOR variable name = initial value TO end value [STEP step value] NEXT variable name

STORED PAR VALUE ("oldparname", outputvalue)

STR (numeric_expression, length, fractions)

STR (format string, numeric expression)

STRLEN (string expression)

STRSTR (string expressionl, string expression2[, case insensitivity])
STRSUB (string expression, start position, characters number)
STRTOLOWER (string expression)

STRTOUPPER (string expression)

STR{2} (format string, numeric expression [, extra accuracy string])
STW (string expression)

[SET] STYLE name string

[SET] STYLE index

SUBGROUP (g_exprl, g expr2)

GDL Reference Guide

572

Index

SUBGROUP{2} (g exprl, g expr2, edgeColor, materialld, materialColor [, operationStatus])
SUBGROUP{3} (g exprl, g expr2, edgeColor, materialld, materialColor [, operationStatus])
MODEL SURFACE

SURFACE3D ()

SWEEP n, m, alpha, scale, mask,
ul, vl1, sl1, ..., un, vn, sn,
x1l, yl, z1, ..., xm, ym, zm

SWEEPGROUP (g_expr, X, y, Zz)

SWEEPGROUP{2} (g expr, X, y, Z)

SWEEPGROUP{3} (g _expr, x, y, z, edgeColor, materialld, materialColor, method)
SWEEPGROUP{4} (g expr, x, y, z, edgeColor, materialld, materialColor, method, status)

TAN (x)

TEVE x, vy, Z, u, Vv
TEXT d, 0, expression
TEXT2 x, y, expression

TEXTBLOCK name width, anchor, angle, width factor, charspace factor, fixed height,
'string exprl' [, 'string expr2', ...]

TEXTBLOCK _ name width, anchor, angle, width factor, charspace factor, fixed height, n,
'expr 1' [, 'expr 2', ..., 'expr n']

IF condition THEN label
IF condition GOTO label
IF condition GOSUB label

IF condition THEN statement [ELSE statement]

GDL Reference Guide 573

Index

IF condition THEN

[statementl

statement?2

statementn]

[ELSE

statementn+1
statementn+2

statementn+m]

ENDIF

FOR variable name

initial value TO end value

[STEP step value] NEXT variable name

TOLER d
DEL TOP
TUBE n, m, mask,
ul, wl, si,
un, wn, sn,
x1l, vyl, zl, anglel,
Xm, ym, zm, anglem
TUBEA n, m, mask,
ul, wl, si,
un, wn, sn,
x1l, vyl, =z1,
Xm, ym, zm
GDL Reference Guide 574

Index

U
UI BUTTON type, text, x, y [, width, height, id [, url]]
UI BUTTON type, text, x, y, width, height [, id [, url]] [UI TOOLTIP tooltiptext]
UI COLORPICKER "redParamName", "greenParamName", "blueParamName", x0, y0 [, width [,
height]]

UI COLORPICKER{2} redParamName, greenParamName, blueParamName, x0, y0 [, width [, height]]
UI_CURRENT_PAGE index

UI CUSTOM POPUP INFIELD "name", x, y, width, height,
storeHiddenId, treeDepth,
groupingMethod, selectedValDescription,
valuel, wvalue2, valuesArrayl, valuen, valuesArrayn

UI CUSTOM POPUP INFIELD "name", x, y, width, height , extra parameters
[UL TOOLTIP tooltiptext]

UI CUSTOM POPUP INFIELD{2} name, X, y, width, height,
storeHiddenId, treeDepth,
groupingMethod, selectedValDescription,
valuel, wvalue2, valuesArrayl, valuen, valuesArrayn

UI CUSTOM POPUP INFIELD{2} name, X, y, width, height , extra parameters
[UI TOOLTIP tooltiptext]

UI CUSTOM POPUP LISTITEM itemID, fieldID, "name", childFlag, image, paramDesc,
storeHiddenId, treeDepth,

groupingMethod, selectedValDescription,

valuel, value2, valuesArrayl, valuen, valuesArrayn

UI CUSTOM POPUP LISTITEM itemID, fieldID, "name", childFlag , image , paramDesc,
extra parameters

GDL Reference Guide 575

Index

[UI TOOLTIP tooltiptext]

UI CUSTOM POPUP LISTITEM{2} itemID, fieldID, name, childFlag, image, paramDesc,
storeHiddenId, treeDepth,

groupingMethod, selectedValDescription,

valuel, wvalue2, valuesArrayl, valuen, valuesArrayn

UI CUSTOM POPUP LISTITEM{2} itemID, fieldID, name, childFlag , image , paramDesc,
extra parameters
[UI TOOLTIP tooltiptext]

UI DIALOG title [, size x, size y]
UI GROUPBOX text, x, y, width, height

UI INFIELD "name", x, y, width, height [,
method, picture name,
images number,
rows_number, cell x, cell y,
image x, image_ vy,
expression imagel, textl,

expression_ imagen, textn]

UI INFIELD "name", x, y, width, height [, extra parameters ...]
[UI TOOLTIP tooltiptext]

UI INFIELD{2} name, x, y, width, height [,
method, picture name,
images number,
rows_number, cell x, cell y,
image x, image vy,
expression imagel, textl,

expression imagen, textn]

GDL Reference Guide 576

Index

UI INFIELD{2} name, x, y, width, height [,

extra parameters ...]
[UI TOOLTIP tooltiptext]

UI INFIELD{3} name, x, y, width, height [,
method, picture name,
images number,
rows_number, cell x, cell y,
image x, image vy,
expression imagel, textl, value definitionl,

[picIdxArray, textArray, valuesArray,
-1

expression imagen, textn, value definitionn]

UI INFIELD{3} name, x, y, width, height [,

extra parameters ...]
[UI TOOLTIP tooltiptext]

UI INFIELD{4} "name", x, y, width, height [,
method, picture name,
images number,
rows_number, cell x, cell y,
image x, image vy,
expression_ imagel, textl, value definitionl,

[picIdxArray, textArray, valuesArray,
-]
expression_ imagen, textn, value definitionn]
UI INFIELD{4} "name", x, y, width, height [,
[UI_TOOLTIP tooltiptext]

UI LISTFIELD fieldID, X,
value header]]]

extra parameters ...]

y, width, height [, iconFlag [, description header [,

UI LISTFIELD fieldID, x, vy, width, height [,

iconFlag [, description header [,
value header]]]

GDL Reference Guide 577

Index

[UI TOOLTIP tooltiptext]
UI LISTITEM itemID, fieldID, "name" [, childFlag [,

UI LISTITEM itemID, fieldID, "name" [, childFlag [,
[UI TOOLTIP tooltiptext]

UI LISTITEM{2} itemID, fieldID, name [, childFlag [,

UI LISTITEM{2} itemID, fieldID, name [, childFlag [,
[UI_TOOLTIP tooltiptext]

UI OUTFIELD expression, x, y [, width, height [, flags]]

UI OUTFIELD expression, x, y, width, height [, flags]

[UI TOOLTIP tooltiptext]

UI PAGE page number [, parent id, page title [, image]]

UI PICT picture reference, x, y [, width, height [,
UI PICT expression, x, y [, width, height [, mask]]

UI PICT BUTTON type, text, picture reference,
X, y, width, height [, id [, url]]

UI PICT BUTTON type, text, picture reference,

image [, paramDesc]]]

image [, paramDesc]]]

image [, paramDesc]]]

image [, paramDesc]]]

mask]]

[UI _TOOLTIP tooltiptext]

X, y, width, height [, id [, url]] [UI_TOOLTIP tooltiptext]

UI RADIOBUTTON name, value, text, x, y, width, height
UI RADIOBUTTON name, value, text, x, y, width, height

[UL TOOLTIP tooltiptext]

UI RADIOBUTTON{2} "name", value, text, x, y, width, height

UI SEPARATOR x1, yl, x2, y2
UI SLIDER "name", x0, yO0, width, height [, nSegments

UI SLIDER{2} name, x0, y0, width, height [, nSegments

UI STYLE fontsize, face code

[,
L,

UI BUTTON type, text, x, y, width, height [, id [, url]]

sliderStyle]]
sliderStyle]]

[UL TOOLTIP tooltiptext]

GDL Reference Guide

578

Index

UI PICT BUTTON type, text, picture_reference,
X, y, width, height [, id [, url]] [UI TOOLTIP tooltiptext]

UI INFIELD "name", x, y, width, height [, extra parameters ...]
[UL TOOLTIP tooltiptext]

UI INFIELD{2} name, X, y, width, height [, extra parameters ...]
[UI TOOLTIP tooltiptext]

UI INFIELD{3} name, X, y, width, height [, extra parameters ...]
[UI TOOLTIP tooltiptext]

UI INFIELD{4} "name", x, y, width, height [, extra parameters ...]
[UI TOOLTIP tooltiptext]

UI CUSTOM POPUP_ INFIELD "name", x, y, width, height , extra parameters
[UI_TOOLTIP tooltiptext]

UI CUSTOM POPUP INFIELD{2} name, X, y, width, height , extra parameters
[UI TOOLTIP tooltiptext]

UI RADIOBUTTON name, value, text, x, y, width, height [UI TOOLTIP tooltiptext]

UI OUTFIELD expression, x, y, width, height [, flags] [UI TOOLTIP tooltiptext]
UI PICT expression, x, y [, width, height [, mask]] [UI TOOLTIP tooltiptext]
UI LISTFIELD fieldID, x, vy, width, height [, iconFlag [, description header [,

value header]]]
[UI TOOLTIP tooltiptext]

UI LISTITEM itemID, fieldID, "name" [, childFlag [, image [, paramDesc]]]
[UI_TOOLTIP tooltiptext]

UI LISTITEM{2} itemID, fieldID, name [, childFlag [, image [, parambDesc]]]
[UI TOOLTIP tooltiptext]

UI CUSTOM POPUP LISTITEM itemID, fieldID, "name", childFlag , image , paramDesc,
extra parameters
[UL TOOLTIP tooltiptext]

GDL Reference Guide 579

Index

UI CUSTOM POPUP LISTITEM{2} itemID, fieldID, name, childFlag , image , paramDesc,
extra parameters
[UI TOOLTIP tooltiptext]

REPEAT [statementl

statement?2

statementn]
UNTIL condition

USE (n)
A%
VALUES "parameter name" [,]value definitionl [, value definition2, ...]
VALUES "fill parameter name" [[,] FILLTYPES MASK fill types,] value definitionl

[, value definition2, ...]

VALUES{2} "parameter name" [,]num expressionl, descriptionl,
[, num expression2, description2, ...]

VALUES{2} "parameter name" [,]num values arrayl, descriptions arrayl
[, num values array2, descriptions array2, ...]

VARDIM1 (expr)
VARDIM2 (expr)
VARTYPE (expression)
VECT x, vy, z

VERT x, vy, 2z

VERT x, vy, z, hard
VOLUME3D ()

GDL Reference Guide 580

Index

\\4

WALLARC2 x, vy, r, alpha, beta

WALLBLOCK2 n, fill control, fill pen, fill background pen,
fillOrigoX, fillOrigoY, fillAngle,
x1l, yl, s1,

Xn, yn, sn

WALLBLOCK2{2} n, frame fill, fillcategory, distortion flags,
fill pen, fill background pen,
fillOrigoX, £fillOrigoY,
mxx, mxy, myx, myy,
innerRadius,
x1l, yl, si1,

Xn, yn, sn

WALLHOLE n, status,
x1, yl, maskl,

xn, yn, maskn
[/ X/ y/ Z]
WALLHOLEZ n, fill control, fill pen, fill background pen,
fillOrigoX, £illOrigoY, fillAngle,
x1l, vyl, s1,

Xn, yn, sn

WALLHOLEZ2{2} n, frame fill, fillcategory, distortion flags,
fill pen, fill background pen,
fillOrigoX, fillOrigoYy,
mxx, mxy, myx, myy,
innerRadius,

GDL Reference Guide

581

Index

x1l, yl, si,

Xn, yn, sn
WALLLINE2 x1, vy1, x2, y2
WALLNICHE n, method, status,

rx, ry, rz, d,
x1l, yl, maskl, [matl,]

xn, yn, maskn[, matn]

DO [statmentl
statement?2

statementn]
WHILE condition

WHILE condition DO

[statementl
statement?2

statementn]
ENDWHILE

MODEL WIRE

XFORM all, al2, al3, ali4,
azl, a22, a23, a24,
a3l, a32, a33, a34

XWALL left material, right material, vertical material, horizontal material,
height, x1, x2, x3, x4,
vl, v2, y3, v4,

GDL Reference Guide 582

Index

t, radius,

log height, log offset,

maskl, mask2, mask3, mask4,

n,

x startl, y lowl, x endl, y highl,
frame shownl,

x startn, y lown, x endn, y highn,
frame shownn,

m,

al, bl, cl1, di,

am, bm, cm, dm,
status

XWALL {2} left material, right material, vertical material,

height, x1, x2, x3, x4,

vl, v2, y3, v4,

t, radius,

log _height, log offset,

maskl, mask2, mask3, maski4,

n,

x startl, y lowl, x endl, y highl,
sill depthl, frame shownl,

X startn, y lown, x endn, y highn,
sill depthn, frame shownn,

m,

al, bl, cl1, di,

am, bm, cm, dm,
status

XWALL {3} left material, right material, vertical material,

horizontal material,

horizontal material,

GDL Reference Guide

583

Index

height, x1, x2, x3, x4,

vl, v2, y3, v4,

t, radius,

log height, log offset,

maskl, mask2, mask3, mask4,

n,

x startl, y lowl, x endl, y highl,
sill depthl, frame shownl,

x startn, y lown, x endn, y highn,
sill depthn, frame shownn,

m,

al, bl, cl1, di,

am, bm, cm, dm,
status

GDL Reference Guide 584

	GDL Reference Guide
	Table of Contents
	General Overview
	Starting Out
	Scripting
	3D Generation

	GDL Syntax
	Rules of GDL Syntax
	Statements
	Line
	Label
	Characters
	Strings
	Identifiers
	Variables
	Parameters
	Simple Types
	Derived Types
	Conventions used in this book

	Coordinate Transformations
	2D Transformations
	ADD2
	MUL2
	ROT2

	3D Transformations
	ADDX
	ADDY
	ADDZ
	ADD
	MULX
	MULY
	MULZ
	MUL
	ROTX
	ROTY
	ROTZ
	ROT
	XFORM

	Managing the Transformation Stack
	DEL
	DEL TOP
	NTR

	3D Shapes
	Basic Shapes
	BLOCK
	BRICK
	CYLIND
	SPHERE
	ELLIPS
	CONE
	PRISM
	PRISM_
	CPRISM_
	CPRISM_{2}
	CPRISM_{3}
	CPRISM_{4}
	BPRISM_
	FPRISM_
	HPRISM_
	SPRISM_
	SPRISM_{2}
	SPRISM_{3}
	SPRISM_{4}
	SLAB
	SLAB_
	CSLAB_
	CWALL_
	BWALL_
	XWALL_
	XWALL_{2}
	XWALL_{3}
	BEAM
	CROOF_
	CROOF_{2}
	CROOF_{3}
	CROOF_{4}
	MESH
	ARMC
	ARME
	ELBOW

	Planar Shapes in 3D
	HOTSPOT
	HOTLINE
	HOTARC
	LIN_
	RECT
	POLY
	POLY_
	PLANE
	PLANE_
	CIRCLE
	ARC

	Shapes Generated from Polylines
	EXTRUDE
	PYRAMID
	REVOLVE
	REVOLVE{2}
	REVOLVE{3}
	REVOLVE{4}
	REVOLVE{5}
	RULED
	RULED{2}
	SWEEP
	TUBE
	TUBEA
	COONS
	MASS
	MASS{2}
	POLYROOF
	POLYROOF{2}
	POLYROOF{3}
	POLYROOF{4}
	EXTRUDEDSHELL
	EXTRUDEDSHELL{2}
	EXTRUDEDSHELL{3}
	REVOLVEDSHELL
	REVOLVEDSHELL{2}
	REVOLVEDSHELL{3}
	REVOLVEDSHELLANGULAR
	REVOLVEDSHELLANGULAR{2}
	REVOLVEDSHELLANGULAR{3}
	RULEDSHELL
	RULEDSHELL{2}
	RULEDSHELL{3}

	Elements for Visualization
	LIGHT
	PICTURE

	3D Text Elements
	TEXT
	RICHTEXT

	Primitive Elements
	VERT
	VERT{2}
	TEVE
	VECT
	EDGE
	PGON
	PGON{2}
	PGON{3}
	PIPG
	COOR
	COOR{2}
	COOR{3}
	BODY
	BASE

	NURBS Primitive Elements
	NURBS Face trimming
	NURBS Geometry Commands
	NURBSCURVE2D
	NURBSCURVE3D
	NURBSSURFACE

	NURBS Topology Commands
	NURBSVERT
	NURBSEDGE
	NURBSTRIM
	NURBSTRIMSINGULAR
	NURBSFACE
	NURBSLUMP
	NURBSBODY

	Point Clouds
	POINTCLOUD

	Cutting in 3D
	CUTPLANE
	CUTPLANE{2}
	CUTPLANE{3}
	CUTPOLY
	CUTPOLYA
	CUTSHAPE
	CUTFORM
	CUTFORM{2}

	Solid Geometry Commands
	GROUP - ENDGROUP
	ADDGROUP
	SUBGROUP
	ISECTGROUP
	ISECTLINES
	PLACEGROUP
	KILLGROUP
	SWEEPGROUP
	CREATEGROUPWITHMATERIAL

	Binary 3D
	BINARY

	2D Shapes
	Drawing Elements
	HOTSPOT2
	HOTLINE2
	HOTARC2
	LINE2
	RECT2
	POLY2
	POLY2_
	POLY2_A
	POLY2_B
	POLY2_B{2}
	POLY2_B{3}
	POLY2_B{4}
	POLY2_B{5}
	ARC2
	CIRCLE2
	SPLINE2
	SPLINE2A
	PICTURE2
	PICTURE2{2}

	Text Element
	TEXT2
	RICHTEXT2

	Binary 2D
	FRAGMENT2

	3D Projections in 2D
	PROJECT2
	PROJECT2{2}
	PROJECT2{3}
	PROJECT2{4}

	Drawings in the List
	DRAWING2
	DRAWING3
	DRAWING3{2}
	DRAWING3{3}

	Graphical Editing Using Hotspots
	Status Codes
	Status Code Syntax
	Additional Status Codes
	Previous part of the polyline: current position and tangent is defined
	Segment by absolute endpoint
	Segment by relative endpoint
	Segment by length and direction
	Tangential segment by length
	Set start point
	Close polyline
	Set tangent
	Set centerpoint
	Tangential arc to endpoint
	Tangential arc by radius and angle
	Arc using centerpoint and point on the final radius
	Arc using centerpoint and angle
	Full circle using centerpoint and radius

	Attributes
	Directives
	Directives for 3D and 2D Scripts
	LET
	RADIUS
	RESOL
	TOLER
	PEN
	LINE_PROPERTY
	[SET] STYLE

	Directives Used in 3D Scripts Only
	MODEL
	[SET] MATERIAL
	SECT_FILL
	SECT_ATTRS
	SHADOW

	Directives Used in 2D Scripts Only
	DRAWINDEX
	[SET] FILL
	[SET] LINE_TYPE

	Inline Attribute Definition
	Materials
	DEFINE MATERIAL
	DEFINE MATERIAL BASED_ON
	DEFINE TEXTURE

	Fills
	DEFINE FILL
	DEFINE FILLA
	DEFINE SYMBOL_FILL
	DEFINE SOLID_FILL
	DEFINE EMPTY_FILL
	DEFINE LINEAR_GRADIENT_FILL
	DEFINE RADIAL_GRADIENT_FILL
	DEFINE TRANSLUCENT_FILL
	DEFINE IMAGE_FILL

	Line Types
	DEFINE LINE_TYPE
	DEFINE SYMBOL_LINE

	Text Styles and Text Blocks
	DEFINE STYLE
	DEFINE STYLE{2}
	PARAGRAPH
	TEXTBLOCK
	TEXTBLOCK_

	Additional Data

	External file dependence
	FILE_DEPENDENCE

	Non-Geometric Scripts
	The Properties Script
	DATABASE_SET
	DESCRIPTOR
	REF DESCRIPTOR
	COMPONENT
	REF COMPONENT
	BINARYPROP
	SURFACE3D
	VOLUME3D
	POSITION
	DRAWING

	The Parameter Script
	VALUES
	VALUES{2}
	PARAMETERS
	LOCK
	HIDEPARAMETER

	The User Interface Script
	UI_DIALOG
	UI_PAGE
	UI_CURRENT_PAGE
	UI_BUTTON
	UI_PICT_BUTTON
	UI_SEPARATOR
	UI_GROUPBOX
	UI_PICT
	UI_STYLE
	UI_OUTFIELD
	UI_INFIELD
	UI_INFIELD{2}
	UI_INFIELD{3}
	UI_INFIELD{4}
	UI_CUSTOM_POPUP_INFIELD
	UI_CUSTOM_POPUP_INFIELD{2}
	UI_RADIOBUTTON
	UI_RADIOBUTTON{2}
	UI_LISTFIELD
	UI_LISTITEM
	UI_LISTITEM{2}
	UI_CUSTOM_POPUP_LISTITEM
	UI_CUSTOM_POPUP_LISTITEM{2}
	UI_TOOLTIP
	UI_COLORPICKER
	UI_COLORPICKER{2}
	UI_SLIDER
	UI_SLIDER{2}

	The Forward Migration Script
	SETMIGRATIONGUID
	STORED_PAR_VALUE
	DELETED_PAR_VALUE

	The Backward Migration Script
	NEWPARAMETER

	Expressions and Functions
	Expressions
	DIM
	VARDIM1
	VARDIM2
	PARVALUE_DESCRIPTION

	Operators
	Arithmetical Operators
	Relational Operators
	Boolean Operators

	Functions
	Arithmetical Functions
	ABS
	CEIL
	INT
	FRA
	ROUND_INT
	SGN
	SQR

	Circular Functions
	ACS
	ASN
	ATN
	COS
	SIN
	TAN
	PI

	Transcendental Functions
	EXP
	LGT
	LOG

	Boolean Functions
	NOT

	Statistical Functions
	MIN
	MAX
	RND

	Bit Functions
	BITTEST
	BITSET

	Special Functions
	REQ
	REQUEST
	IND
	APPLICATION_QUERY
	LIBRARYGLOBAL

	String Functions
	STR
	STR{2}
	SPLIT
	STW
	STRLEN
	STRSTR
	STRSUB
	STRTOUPPER
	STRTOLOWER

	Control Statements
	Flow Control Statements
	FOR - TO - NEXT
	DO - WHILE
	WHILE - ENDWHILE
	REPEAT - UNTIL
	IF - GOTO
	IF - THEN - ELSE - ENDIF
	GOTO
	GOSUB
	RETURN
	END / EXIT
	BREAKPOINT

	Parameter Buffer Manipulation
	PUT
	GET
	USE
	NSP

	Macro Objects
	CALL

	Output in an Alert Box or Report Window
	PRINT

	File Operations
	OPEN
	INPUT
	VARTYPE
	OUTPUT
	CLOSE

	Using Deterministic Add-Ons
	INITADDONSCOPE
	PREPAREFUNCTION
	CALLFUNCTION
	CLOSEADDONSCOPE

	Miscellaneous
	Global Variables
	Parameter script compatibility
	General environment information
	Story information
	Fly-through information
	General element parameters
	Object, Lamp, Door, Window, Wall End, Skylight parameters
	Object, Lamp, Door, Window, Wall End, Skylight, Curtain Wall Accessory parameters - available for listing and labels only
	Object, Lamp, Curtain Wall Accessory parameters - available for listing and labels only
	Window, Door and Wall End parameters
	Window, Door parameters - available for listing and labels only
	Lamp parameters - available for listing and labels only
	Label parameters
	Wall parameters - available for Doors/Windows, listing and labels
	Wall parameters - available for listing and labels only
	Column parameters - available for listing and labels only
	Beam parameters - available for listing and labels only
	Slab parameters - available for listing and labels only
	Roof parameters - available for skylights, listing and labels
	Roof parameters - available for listing and labels only
	Fill parameters - available for listing and labels only
	Mesh parameters - available for listing and labels only
	Curtain Wall parameters - available for listing and labels only
	Curtain Wall Frame parameters - available for listing and labels only
	Curtain Wall Panel parameters - available for listing and labels only
	Curtain Wall Junction parameters - available for listing and labels only
	Curtain Wall Accessory parameters - available for listing and labels only
	Migration parameters - available for migration scripts only
	Skylight parameters - available for listing and labels only
	Common Parameters for Shells and Roofs - available for listing and labels only
	Parameters for Morphs - available for listing and labels only
	Free users’ globals
	Example usage of global variables
	Deprecated Global Variables
	Old Global Variables

	Fix named optional parameters
	Parameters set by ARCHICAD
	Parameters for D/W attributes (available for Door, Window, Label, Listing)
	Floor plan display
	Direction
	Polygonal wall data
	Hole position
	Anchor data

	Parameters for WALL attributes (available for Door, Window, Label, Listing)
	Floor plan display
	Geometric data

	Parameters for COLUMN attributes (available for Label, Listing)
	Floor plan display
	Geometric data

	Parameters for BEAM attributes (available for Label, Listing)
	Floor plan display
	Geometric data

	Parameters for ROOF attributes (available for Label, Listing)
	Floor plan display

	Door/Window Marker attributes
	Detail/Worksheet Marker attributes
	Curtain wall accessory attributes
	Drawing Title attributes
	General running context
	Room parameters (available for Zone Stamps)

	Parameters read by ARCHICAD
	Objects on Floor Plan
	Floor plan cutting of planar elements (i.e. skylight object, roof accessory objects)

	Door/Window objects
	Curtain wall panel attributes
	Custom Component Template
	Zone Stamp parameters
	Label paremeters

	Parameters for add-ons
	Parameters of Skylight add-on
	Hole edge cut manipulation

	Parameters of Corner Window add-on
	Basic parameters of Corner Window objects
	Wall skins data parameters of Corner Window objects (available from ARCHICAD 12)

	Parameters of IFC add-on
	Common basic parameters of Door and Window objects
	Basic parameters of Door objects
	Basic parameters of Window objects
	Basic parameters of Transport Elements
	Basic parameters of Lift objects
	Basic parameters of Stair objects
	Basic parameters of MEP elements

	REQUEST Options
	Request Parameter Script Compatibility
	Details of Requests
	Deprecated Requests

	Application Query Options
	Document feature
	View direction

	MEP System
	Get MEP Systems
	Get Domain
	Get Contour Pen
	Get Fill Pen
	Get Background Pen
	Get Fill Type
	Get Center Line Type
	Get Center Line Pen
	Get System Material
	Get Insulation Material

	MEP Modeler
	Is Available

	MEP Connection Type
	Get Connection Types
	Get Connection Type Style

	MEP Flexible Segment
	Start Sectioning
	Add Control Point
	Add Direction and Width Vector
	End Sectioning

	MEP Bend
	Start Sectioning

	Parameter Script
	First Occasion in Progress

	Tags and Categories
	Get Parameter Folder Names
	Get Parameter Names
	Get Parameters

	Library manager
	Ies files
	User image files

	GDL Style Guide
	Introduction
	Naming Conventions
	General rules
	Variable names
	Capitalization

	Expressions
	Control flow statements
	if - else - endif
	for - next, do - while, while - endwhile, repeat - until

	Subroutines
	Writing comments
	Script header
	Section divide

	Script structure
	Bad Solution
	Good Solution

	Basic Technical Standards
	Introduction
	Library part format
	File extension
	Identification

	General scripting issues
	Numeric types - Precision
	Trigonometry functions
	GDL warnings
	Hotspot and Hotline IDs
	Purpose of hotspot/hotline/hotarc identification
	Problem of old-school hotspots/hotlines
	Correct hotspot/hotline/hotarc scripting

	Editable hotspots
	Editable hotspot example - Shoe / Shoe-rack

	GDL execution contexts
	Communicating values with ARCHICAD
	Information flow from ARCHICAD
	Global variables
	Fix named optional parameters
	Requests and Application Queries
	Information coming from the library part

	Model View Options, Library Global
	Internal Model View Options
	Library Global View Options

	Script type specific issues
	Master script
	2D script
	Execution context
	General recommendation
	Defining line and fill properties

	3D script
	Execution context
	General recommendation
	Modeling transparent bodies
	Texture mapping
	Picture elements
	Group operations

	Parameter script
	Execution context
	General recommendation
	Font type names
	Setting limits for array parameters

	User Interface script
	Execution context
	General recommendation
	Thumbnail control pictures
	Tab page handling
	Thumbnail controls with dynamic items
	Transparent UI pictures
	Font sizes on the UI

	Forward Migration script
	Execution context
	General recommendation

	Backward Migration script
	Execution context
	General recommendation

	Migration table

	Writing macros
	Macro return parameters
	Advanced parameters all
	Faster macro call
	Macro call example

	Background Conversion Issues
	Speed Issues
	Windows-Macintosh compatibility
	Changing platform with binary libraries

	Doors and Windows
	General Guidelines
	Positioning
	Creation of Door/Window Library Parts
	Rectangular Doors/Windows in Straight Walls
	3D Related Challenges
	Non-Rectangular Doors/Windows in Straight Walls
	WALLHOLE
	WALLNICHE

	Rectangular Doors/Windows in Curved Walls
	Non-Rectangular Doors/Windows in Curved Walls

	2D Related Challenges
	Cutting custom wall opening
	WALLHOLE2
	WALLHOLE2{2}

	Extending the wall polygon
	WALLBLOCK2
	WALLBLOCK2{2}
	WALLLINE2
	WALLARC2

	GDL Created from the Floor Plan
	Keywords
	Common Keywords
	Reserved Keywords
	3D Use Only
	2D Use Only
	2D and 3D Use
	Non-Geometric Scripts
	Properties Script
	Parameter Script
	Interface Script
	Forward and Backward Migration Scripts

	GDL Data I/O Add-On
	Description of Database
	Opening a Database
	Reading Values from Database
	Writing Values into Database
	Closing Database

	GDL Datetime Add-On
	Opening Channel
	Reading Information
	Closing Channel

	GDL File Manager I/O Add-On
	Specifying Folder
	Getting File/Folder Name
	Finishing Folder Scanning

	GDL Text I/O Add-On
	Opening File
	Reading Values
	Writing Values
	Closing File

	Property GDL Add-On
	Open property database
	Close property database
	Input to property database
	Output to property database

	GDL XML Extension
	Opening an XML Document
	Reading an XML Document
	Modifying an XML Document

	Polygon Operations Extension
	Opening a channel
	Polygon container management
	Polygon management
	Polygon operation settings
	Polygon operations
	Get resulting polygons
	Closing channel

	Autotext Guide
	Project info keywords
	General
	Layout autotexts
	Drawing autotexts
	Reference type autotexts
	Marker type autotexts
	Change related autotexts
	Layout revision related autotexts

	New GDL Features in ARCHICAD 20
	Introducing NURBS
	General new features
	Recommended updates of existing library parts

	Index
	Syntax Listing of GDL Commands

